Protists – General

Protists were the earliest and simplest of eukaryotic organisms; they were the second major form of life to appear on the earth after the prokaryotes (bacteria)

mostly single celled organisms

very efficient cells compared to procaryotic cells

Protists are not a natural grouping, some divide protists into 5 or 6 separate kingdoms and 50 or so phyla

very diverse group of organisms; algae, seaweeds, protozoa, slime molds & water molds

we will concentrate on those that have some affinities to the Animal Kingdom

most of the “animal – like” protists are collectively called the Protozoa

common name for an unrelated group of protists that share at least some characteristics with the animal kingdom

The Animal-like Protists: The Protozoa

most are unicellular; a few are colonial

protozoa share several animal-like traits:

lack cell wall

most are motile

heterotrophic nutrition

→ protozoa gave rise to animals

most are microscopic (3-300μm)

but some are relatively large cells than can be seen with the unaided eye

one species of amoeba (foraminifera) is 2.5” long

some colonial

diverse group of organelles with highly developed division of labor

protozoa are found in all aquatic environments anywhere there is water or moisture:

freshwater ponds, lakes, creeks, rivers

marine environments

some found in terrestrial habitats where moisture is abundant:

sand

soil

decaying organic matter

some are symbiotic in animals & other organisms

some are mutualistic

many are parasites of animals

eg. most vertebrates have protozoan parasites in their intestinal tract or in their blood

eg. a few are ectoparasites of fish (Costia)

in aquatic environments they are an important part of plankton

= organisms that drift with currents

phytoplankton include autotrophic protists

zooplankton include heterotrophic protists

most protozoa are motile by

cilia

usually many short whiplike filaments that beat in unison to move protozoan along

flagella

much longer whiplike filaments; usually only one or a few per cell

amoeboid motion (false feet; pseudopodia)

some can send extensions outward, then “ooze” into them (eg. “the blob”)

or they can even actually “walk” on these false feet

some protozoa are nonmotile (=sessile) but use cilia or flagella to create water currents for feeding

most have optimum temperature range of 36 – 40 º C (=96.8 – 104º F)

most protozoa are heterotrophs

→ must eat organic food:

they have many ways to take in organic food:

1. absorbing dissolved organic nutrients through cell membrane

2. ingest solid particles through a mouth-like opening (=cytostome)

eg. eat bacteria

3. some are herbivores

eat algae

4. some are saprophytic

= eat decaying organic matter in water or sediment

eg. scavengers, detritus feeders
5. many are **predators**
 some can eat prey larger than themselves
 (e.g. didinium takes 1 min & digests for 2 hrs)
 some have long hollow "tentacles" and pierce other protozoa to suck contents out (suctoria)

6. some are **parasites**
 once inside the cell:
 food becomes enclosed in **vacuole** which travels through cytoplasm (endocytosis)
 digestive enzymes are injected into the vacuole to digest the food
 undigested material is expelled by a reverse process (exocytosis) or through an "anal pore"
 a few protozoa are **autotrophs** and have **chloroplasts**
 do photosynthesis to make organic molecules

Reproduction and Life Cycles
protozoa reproduce both asexually and sexually:
 asexual: main form of reproduction
 sexual: involves some exchange of genes
 - **conjugation** involves some exchange of genes
 - (ciliates only)
 - **syngamy** = fusion of gametes (egg & sperm)
 some have alternation of sexual and asexual generations

Life Cycles
most protozoa exist in a single form which feeds and reproduces
some alternate between two stages in their life cycle:
 - **troph** = active vegetative feeding form
 - **cyst** = more resistant stage, low metabolic rate

allows them to be successful even in harsh environments
 - cilia or flagella are reabsorbed
 - metabolism slows or stops
 - hard resistant outer covering is secreted
 the resistant stage can withstand harsh conditions and become an active feeding stage again when conditions improve
 some cysts have survived for 38 yrs and 49 yrs in dried soil

Reproduction
protozoa, like all protists, reproduce both **asexually** and **sexually**:
 asexual: identical copies
 this is their main form of reproduction
 most protozoa divide several times per day
 by: **fission**
 budding
 multiple fission
 sexual: involves some exchange of genes between 2 cells
 produces genetically unique individuals
 conjugation
 two individuals come together and one gives a few of its genes to the other
 they separate as genetically different individuals and usually then reproduce asexually
 (ciliates only)
 syngamy
 two separate cells, acting and male and female actually join and fuse together like egg and sperm in a zygote (fertilized egg)
 combine their genetic material and then divide asexually as a genetically distinct individual
 most protists alternate between asexual and sexual reproduction
 a few parasitic forms also have several different developmental stages in more than one host
Some major kinds of Protozoa:

these are just convenient groupings of a considerably larger number of actual phyla and does not follow current classification schemes

1. **“Amoebas”**
 - protozoa that move primarily by amoeboid motion
 - ~44,000 living and extinct species

2. **“Flagellates”**
 - protozoa that move mainly with flagella
 - ~1,500 species

3. **“Ciliates”**
 - protozoa that use cilia for movement or for feeding
 - ~8,000 species

4. **Apicomplexans**
 - nonmotile, parasitic protozoa with complex life cycles
 - ~5,000 species

1. **“Amoebas”**
 - amoeba = “to change form”
 - includes protozoa that move by **pseudopodia** (=false feet)
 - organism can alternate between solid gel-like and liquid cytoplasm to produce pseudopodia
 - false feet used for locomotion
 - false feet used to engulf food
 - some are long thin tentacle-like for grabbing food and drawing it in
 - simplest protozoans → relatively few organelles
 - also, some of the largest single celled organisms
 - some amoebas are up to 4” long (forams)
 - the life cycle of some amoebas involve the alternation between amoeba and flagellate forms
 - found in all aquatic environments
 - many are **symbiotic** in animals
 - amoebas are the only group of protozoa that have an extensive fossil record

over 20,000 fossil species

some member of the group secrete or construct protective **shells**

 - the shell may be composed of **calcium carbonate** or **silica** secreted by cytoplasm
 - foreign material such as sand grains embedded in cement like secretion

 - two most important shelled forms:
 - **radiolaria** secrete a silica shell (SiO₂)
 - found from surface to bottom of ocean
 - **foraminiferans** produce calcium carbonate shells (CaCO₃)
 - most live on the ocean floor in incredible numbers
 - have existed since precambrian times
 - form thick “oozes” that cover a third of the deep ocean floor
 - both have an extensive fossil record are are valuable to geologists as “index fossils”

amoebas reproduce mostly asexually

 - a few also reproduce sexually

Human Impacts:

1. some amoebas are common **human pathogens:**

 - **Entamoeba gingivalis**
 - found in the mouth near base of teeth
 - found in 95% of people with gum disease and 50% of people with healthy gums
 - parasitic → feeds on RBC’s and WBC’s at sites of infection and gum disease
 - does not form cysts
 - requires direct transmission by kissing, shared utensils

 - **Entamoeba hystolytica** (amoebic dysentery)
 - intestinal parasite
 - infects 400 Million worldwide
 - esp tropics and areas of poor sanitation
 - 10% of world population is infected
 - up to 10 Million in US
 - kills >10,000/yr
 - 90% hosts are **asymptomatic**
 - humans only reservoir
 - spread by fecal/oral route
 - **cysts** passed in feces
 - ingested with contaminated water
 - invade intestinal lining and feed on RBC’s
2. **Naegleria fowleri**

members of the genus are found in almost all freshwater lakes, rivers, hot springs but extremely rare in them

feeds as an amoeba on bacteria

once most of the food is gone they transform into a flagellated cell (<90 minutes) which is better able to go in search of food

one species, *Naegleria fowleri*, is a human pathogen

35 cases reported in Texas (2007) including a few in central Texas have died from infections of this amoeba parasite

usually infects from getting contaminated water into nose

makes its way to the brain

causes always-fatal primary amoebic meningoencephalitis or PAM

most die within 2 weeks

mature adults seem to be immune

the parasite prefers warm waters with a high iron content especially warm stagnant water

usually cannot survive highly chlorinated water of swimming pools but does seem to survive in low numbers even in treated water supplies

may prefer areas where other organisms have been wiped out by natural or man made disasters (eg Mt. St. Helens)

3. **Acanthamoeba**

one of the most common amoebas in soil also found in freshwaters

though free living it can occasionally cause severe infections of eyes, skin and brain especially in patients with compromised immune systems

spread by improperly disinfected contact lens solutions

can damage cells of the cornea

2. **"Flagellates"**

includes several major phyla

cell membrane surrounded by pellicle that "stiffens" the cell membrane

move using one or a few long flagella

some have "sail-like" undulating membrane used for food gathering and locomotion

reproduce by binary fission

a few are free living

eg. *Euglena* is common in stagnant ponds and creeks

it usually has chloroplasts and does photosynthesis

when sunlight is not available it gets rid of its chloroplasts and becomes a heterotroph

eg. *Volvox* is a colonial flagellate that is thought to resemble what the first truly multicellular animals might have looked like.

Each hollow spherical colony is made up of 50,000 individual cells embedded in a gelatinous ball

each cell is similar to *Euglena* cells and are interconnected by cytoplasmic strands

they are autotrophic

within the colony there is a division of labor with some cells specializing in feeding and locomotion and larger germ cells in specialized for sexual and asexual reproduction

asexual reproduction includes the formation of daughter colonies inside the "adult" colony

most flagellates are symbiotic

one cellulose digesting group has a mutualistic symbiosis with animals

animals are not able to produce the enzymes to break down cellulose or lignin

eg. cellulose digesting flagellates in the gut of termites

1/3rd to 1/2 of a termite's weight is these symbiotic protozoa

eg. cellulose digesting flagellates in cow rumen

contains 1 M protozoa/ml (100 l of fluid total they provide cow with ~20% of its protein needs

some are parasitic in humans and other animals

one group of flagellates, the “Choanoflagellates” are believed to be the protists group most closely related to the protozoa that gave rise to animals and fungi

resemble feeding cells (collar cells) of sponges
common in freshwaters and salt water
many species are **colonial**

Human Impacts

many protozoan flagellates are important human pathogens throughout the world

eg. Giardia (one cause of "traveler’s diarrhea")

- first observed by von Leeuwenhoek in his own feces
- worldwide distribution: one of most common intestinal parasites in the world
 - up to 20% of all humans are infected (7% US)
- also occurs in cattle, cats, bears, coyotes, bird & amphibians
- transmitted by contaminated food or water:
 - cysts shed in feces; fecal/oral transmission
 - epidemics associated with contaminated water
- especially common in poor overcrowded areas with poor sanitation and lack of clean water
- can also be transmitted in ponds and pools
 - cysts can survive up to 2 months in water
 - chlorine doesn't always kill cysts
- once ingested Giardia infects small intestine

begins with aching joints, headache and fever
affects CNS: personality changes, headaches, apathy, sleepiness, emaciation
usually results in death from coma, malnutrition, secondary infections
so far, no safe and effective treatment

eg. Chagas disease (T. cruzi)

- new world tropics; eg Mexico, Central America, So. America
- 40-50% of population in So. America; 2-3 Million are chronically infected
 - 45,000 die each year
- the most serious cases occur in children <5 yrs old
- only a few cases in extreme SW US
- also requires 2 hosts in its life cycle:
 - kissing bug and humans
 - in kissing bug its an intestinal parasite
 - in humans it's a blood parasite
 - other mammals serve as reservoirs: rodents, possums, armadillos
- contracted when "kissing bug" bites (usually on lips)
- bug usually defecates after feeding
- when the bite is scratch some of the infected feces is rubbed into the wound

symptoms somewhat similar to sleeping sickness
chronic and hard to treat
may also affects many organs; eg. brain, heart, intestines
most dangerous to children
 - can affect many organs

eg. Trichomonas

- several species; commensal or parasitic
- **T. tenax**
 - lives in mouth, is not a pathogen
 - 5-10% oral infections, esp with poor oral hygiene
- **T. vaginalis**
 - 20-40% infection rate worldwide
 - one of most common infections in US
 - (2.5 M inf/yr: 3-15% US infected)
 - lives in human urogenital tract: likes acidity of female tract
 - ~50% are asymptomatic carriers
 - no cyst form → usually requires personal contact (STD)
 - occasionally spread in communal baths
 - and mother to child
 - if acid balance is disturbed, eg. by other infections, can become more virulent

it is not usually a parasite: it usually feeds on dead organic material; no invasive ability
usually asymptomatic
in large #’s can cause chronic diarrhea, cramping, dehydration
incidence is increasing in US where it affects 3x’s more children than adults; esp daycare centers & public places

eg. Trypanosoma (Africal Sleeping Sickness)

- some of the most important protozoan parasites are in this genus
- trypanosomes are blood parasites and occur in all vertebrate groups
- human parasites occur mainly in the tropics of Africa and the Americas
- African Sleeping Sickness occurs in old world tropics; esp in Africa
- about 10,000 new cases occur each year; kills ~5,000 people/yr (2007); many of the rest suffer permanent brain damage
- requires two hosts:
 - the tse-tse fly is the final host for the sexual stage of the parasite
 - humans and other animals are intermediate hosts
- humans become infected when fly bites for blood meal
- parasite moves into blood and lymphatic system
esp common in promiscuous young women who are already infected with other STD's
in some women infection may produce a frothy, smelly green discharge & painful urination
not often virulent in men

3. “Ciliates”
the most diverse group of single celled 'protozoan' protists
they also tend to be larger than most protozoans and some can even be seen without magnification
most are freeliving and solitary
in a wide variety of aquatic habitats, especially in freshwaters
most are motile by means of cilia
= 1000's oarlike projections produce coordinated movements
fastest of all the protozoans
in some bundles of cilia are fused to form rigid spines (=cirri) that the organism uses to crawl on substrates
a few are nonmotile, and some of these are colonial
live attached to substrate by stalk
use cilia for filter feeding, not for movement
ciliates have the greatest variety of organelles and internal structures of all the protists:
eg. more than one nucleus

all ciliates have more than one nucleus and usually two different kinds of nuclei
macronucleus → vegetative chores
micronuclei (up to 80) → sexual reproduction
eg. “mouth” (=cytostome) and throatlike area called a gullet
most feed on microorganisms
have mouthlike cytostome; opens into a throat; food vacuole forms at end of throat
an unusual group are called the suctoria
which paralyze their prey (other protozoa) and suck out the cell's contents with tubelike "tentacles"
eg. food vacuoles
contain digestive enzymes for processing organic food
eg. contractile vacuoles
freshwater species tend to take on water
must constantly pump out excess; like a bilge pump on a boat
eg. trichocysts
long thread like proteins that the protozoan is able to shoot out to anchor the cell or to capture prey
eg. myonemes

“eg. chloroplasts!”
ciliates are heterotrophs but ...
some ciliates can steal chloroplasts from the algae they eat and then use them for photosynthesis

Reproduction:
asexual: binary fission
sexual: conjugation: portion of micronuclei are exchanged between + and – forms

Ecological Interactions
ciliates play a vital role in food webs, particularly of freshwater ecosystems
many are part of the zooplankton
others are benthic - spending their lives crawling about the substrate for food

muscle-like fibers that allow stalked forms (eg. Vorticella) to rapidly contract from danger

EG. chloroplasts!”
ciliates are heterotrophs but ...
some ciliates can steal chloroplasts from the algae they eat and then use them for photosynthesis

Reproduction:
asexual: binary fission
sexual: conjugation: portion of micronuclei are exchanged between + and – forms

Ecological Interactions
ciliates play a vital role in food webs, particularly of freshwater ecosystems
many are part of the zooplankton
others are benthic - spending their lives crawling about the substrate for food

muscle-like fibers that allow stalked forms (eg. Vorticella) to rapidly contract from danger

all ciliates have more than one nucleus and usually two different kinds of nuclei
macronucleus → vegetative chores
micronuclei (up to 80) → sexual reproduction
eg. “mouth” (=cytostome) and throatlike area called a gullet
most feed on microorganisms
have mouthlike cytostome; opens into a throat; food vacuole forms at end of throat
an unusual group are called the suctoria
which paralyze their prey (other protozoa) and suck out the cell's contents with tubelike "tentacles"
eg. food vacuoles
contain digestive enzymes for processing organic food
eg. contractile vacuoles
freshwater species tend to take on water
must constantly pump out excess; like a bilge pump on a boat
eg. trichocysts
long thread like proteins that the protozoan is able to shoot out to anchor the cell or to capture prey
eg. myonemes
4. "Apicomplexans"

All members of this group are nonmotile

all are endoparasites

most have fairly complex life cycles

→ same species exists in lots of different forms

alternating between forms that reproduce sexually and those that reproduce asexually

sometimes in two hosts

Human Impacts:

Human parasites include:

eg. Texas fever (Babesia)

- killed 1000's of cattle in US in late 1800's and early 1900's
- spread by tick
- destroy RBC's → causes red urine → "red water fever"
- today almost completely eliminated by dippng cattle to kill ticks

eg. Plasmodium (malaria); several species

- malaria has probably killed more people than any other disease in history
- chronic in some parts of world
- worldwide infects 300 - 5000M each year and kills 1-3 M/yr (90% of cases in Africa, also in Asia & Latin America)
- every 12 seconds someone dies from malaria
- unlike many other parasitic diseases it is NOT a disease of poor sanitation and contamination
- its distribution and incidences is closely correlated with its mosquito host
- relatively rare in US (usually travelers)
- single most important disease hazard for people traveling to foreign lands

requires two hosts to complete life cycle:

Anopheles mosquito has sexual stages in its salivary glands

humans harbor the asexual stages in blood, especially vessels in liver

transmitted by mosquito bite

symptoms of infection:

- 7-14 days after infection cold chills and shaking begin
- uncontrollable deep tremors take over the body (can propel a bed across a room)
- next comes fever (up to 106º F) with profuse sweating
- cyclic chills/fever, headache every 3–4 days

- can produce irreversible damage to liver, spleen, kidneys and brain
- many succumb by way of delerium and coma
- if not treated may be self limiting but host may be a reservoir for up to 3 years
- most effective prevention is elimination of mosquito
- WHO has been trying to eliminate it but with little success
- mosquitoes have developed resistance to insecticides
- the parasite has developed antibiotic resistance
- experimental vaccines are being tested
- some living in endemic areas have developed genetic resistance to disease (sickle cell)

eg. Toxoplasma

- requires two hosts to complete life cycle:
 - cats are primary host,
 - prey species such as rodents serve as intermediate hosts
 - infected cats release cysts in feces
 - rodents, cattle, sheep are intermediate hosts
 - to spread toxoplasma manipulates rodents brains making them reckless and more likely to be caught by cats
 - toxoplasma is an example of a zoonosis

Can be fatal to fetus

humans can become intermediate hosts

- humans contract by contaminated soil, cat feces (litter box), infected meat
- generally no human-human transfer
- → 16% of US adults are infected
- often asymptomatic in adults; children sometimes get rash ("macropapular rash")
- in humans can invade blood and multiply in WBC's and various organs
- if contracted by pregnant woman (especially in the first trimester) the parasite can cross placenta and cause retardation blindness and convulsions in embryo, fetus or newborn
- → 2% of all mental retardation in US may be due to prenatal Toxoplasma exposure
- new info indicates that though there are usually no symptoms in most infected adults there seems to be a correlation with more risky behaviors in humans the mimic the results of the parasite in rodents
- → 1000's of years ago would increase the chances of humans falling prey to large cats
- in another study 3900 drivers were monitored for 18 months
- those who were infected with Toxoplasma were 2.5X's more likely to have an accident
Protists

based on current rate of world infections, 0.4-1 million of world’s annual road deaths might be due to toxo infections

Toxoplasma has also been implicated in the mental disorder; obsessive-compulsive disorder, but results are not yet conclusive

e.g. Cryptosporidium sp.

first reported in people in 1976

is now recognized as a major cause of diarrheal disease worldwide

especially in children in tropical countries

occasional outbreaks occur in US

can be life threatening in AIDS patients

Protists - Slime Molds & Water Molds

~1100 species

two distinct groups of fungus-like protists:

- slime molds
- water molds

both superficially resemble fungi at some stage in life cycle

- heterotrophs

- some produce chitinous cell walls at some stage in their life cycle

- body of threadlike filaments = hyphae

- many produce a fruiting body with spores for reproduction

but differ from fungi:

- most are motile by false feet or flagella at some point during life cycle; fungi are NEVER motile

- produce flagellate reproductive cells; fungi produce nonmotile spore

1. Slime Molds

this group is probably more closely related to amoebas than to fungi

- sometimes referred to as “social amoebas”

common in cool, moist shady places

most easily found in summer and early fall

eg. crevasses of rotting wood

two basic stages to its life cycle:

a. a relatively large motile feeding stage

b. the reproductive stage in the form of a fungus-like fruiting body that produces spores

a. feeding stage (‘plasmodium’):

for most of a slime molds life it exists as a thin, free-living amoeba-like mass of protoplasm

essentially a large single cell up to several inches across that

can cover an area of several square yards

(to 30 g ~ 1oz)
creep along in *amoeboid* fashion and feeds on decaying organic matter, bacteria and protozoa

it is thick and slimy to the touch

feeds and grows as long as there is food and moisture

some species form extensive growths on lawns, croplands

→ do little, if any, damage

→ may appear in the same locations, year after year as patches of purple, gray, white & cream

some species found on lawn are mistaken for dog vomit

some pet owners find them then rush their dogs to the vet to find out why their pet is sick

eg. *Fuligo septica* plasmodium (shades of war of the worlds)

1973 found in Dallas suburb & reported in paper appeared on lawns as bright yellow masses spread over large areas described in paper as a “pulsating yellow blob” blobs broke apart when sprayed with hose

→ but pieces continued to crawl around

caused local panic:

→ must be indestructible aliens from space

→ or mutant bacteria that might take over the earth

excitement soon dissipated once identified

New (2010) research indicates that some slime molds show traits usually encountered in more complex organisms:

eg. slime molds can be taught to “run mazes for food”

eg. some slime molds “farm” the bacteria they eat

they stop grazing on bacterial while there is still some left

then mix uneaten bacteria into the spores they produce to make a “starter kit” for the next generation

fossils of this group has the distinction of being the first true fossil that actually shows an organism caught in the act of sexual reproduction (65MY)

Economic Importance of slime molds:

1. slime molds are eaten in Veracruz Mexico: some are collected, fried and eaten by indigenous peoples called “caca de luna”

b. Reproductive stage:

when food supply dwindles reproduction is initiated

it moves out of its normal habitat and goes to a drier, more exposed location to produce a fruiting body

→ often seen crossing roads, lawns, climbing trees, etc

fruiting bodies can also be produced by absence of food, changes in moisture, pH, temperature

plasmodium divides into numerous mounds

each mound forms cells surrounded by cell walls

at this stage the slime mold more closely resembles fungi than amoebas

produces multicellular fruiting body (= sporangium)

→ very small (~1-2mm); look like tiny mushrooms

→ goblets, globes, plumules

→ with or without a stalk

→ often colored yellow, orange, red

→ produces very resistant reproductive spores

some slime molds can produced a hardened resistant sclerotium to survive adverse condition

2. Water Molds

1000 species (~100 genera) described

most primitive group of fungi

molecular evidence suggests that they are a direct link between protists and fungi

some are unicellular, some multicellular

have chitin in cell wall

mostly aquatic, a few are terrestrial

extremely abundant

a teaspoon of water from virtually any freshwater habitat should yield samples

most are saprobes –absorptive

others are parasites of plants, animals and other fungi

most commonly seen as the fuzzy filaments growing on skin or eggs of fish & amphibians

eg. *Saprolegnia* is common parasite of aquarium fish;

causes lesions

sometimes becomes a problem in fish farms

other species infect rotifers, nematodes, arthropods and diatoms

Economic Impacts of Water Molds:

1. some (chytrids) are part of the microorganism community in the stomachs of most farm animals and grazing animals

 they are anaerobic and produces cellulases to help digest plant material along with other protists and bacteria

 therefore all products coming from these animals (beef, milk, dairy products, leather, wool, etc) are in part a product of these protists

2. some are serious **plant pathogens**

 eg. root rotting fungi, blister rusts, white rusts and downy mildews

 eg. Downy Mildews

 infect grapes, lettuce, corn, cabbage and many other crop plants

 introduced into France in late 1800's

 almost destroyed the wine industry

 problem was accidentally solved using copper sulfate and lime

 eg. Potato Blight (Phytophthora infestans)

 Cause of Irish Potato Famine (1845-7) in Ireland

 the fungus spreads very rapidly;

 don’t know how it kills frogs

 Barton springs salamander and some other amphibians have natural antibiotics in its skin that seem to protect it from the pathogen

 2008-probiotic treatment with normal amphibian skin bacterium, *Janthinobacterium lividum*, seems to protect frogs from the chytrid.

 It apparently produces an antibiotic that is deadly to the chytrid.

 Treatment is now being tested on wild populations

3. Animal Pathogens

 a primitive water mold pathogen (*Batrachochytrium dendrobatidis* (chytrid)) is at least partly responsible for current decline in amphibians around the world

 today one third of the worlds 6,000 amphibian species are threatened

 one of largest extinction spasms in vertebrate history

 unsure of exact causes of declines:

 possibly caused by acid precip, deforestation, urbanization, climate change

 more recently noted deformities pollutants in water

 most recently has been tied to worldwide spread of (including in and around central Texas)

 virtually the entire Irish potato crop was wiped out in one week

 > 1 million deaths from starvation

 began large scale emmigration of Irish to US

 within a decade the population of Ireland dropped 50%: 8M -> 4M

 eg. other Phytophthora species

 have caused widespread destruction of many crops throughout the world:

 pineapples, tomatoes, rubber, onions, strawberries, apples, soybeans, tobacco, citrus

Protists - 1413, Ziser Lecture Notes, 2012.9