Phylum Echinodermata

Bio 1413: General Zoology Lab (Ziser, 2008)

[Exercise 16; p 247]

Identifying Characteristics of the Phylum

radial (pentamerous) symmetry in adult; larva is bilaterally symmetrical
unique water vascular system
all marine
deuterostomes
endoskeleton of calcium carbonate ossicles
dioecious
free swimming bipinnaria larva
well developed regenerative abilities (asexual reproduction)
extensive and diverse fossil record with many extinct classes

Cell Types and Characteristic Structures

-endoskeleton composed of numerous ossicles, separate or fused to form a test

-water vascular system: **madreporite**, stone canal, circular canal, radial canals (usually along ambulacral grooves), **tube feet**

-pedicellariae

-dermal gills (=papulae)

Body Organization

- -adult radially symmetrical, usually with five part (pentamerous) symmetry, or multiples of 5's
- -no distinct head or brain (no cephalization)
- -circulatory system greatly reduced and replaced, in function, by water vascular system

Classification

- **Class Crinoidea (sea lilies):** flowerlike with central calyx and branching arms; some sessile and attached to substrate by stalk
- **Class Echinoidea (sea urchins, sand dollars):** skeleton of fused plates forming "test", body covered with moveable spines
- Class Holothuroidea (sea cucumbers): endoskeleton greatly reduced or absent, softbodied animals elongated or wormlike with circle of tentacles at oral end
- **Class Asteroidea (starfish):** "star-shaped" with tapering arms and with flexible skeleton of many separate calcareous plates

Class Ophiuroidea (brittle stars): starshaped but with distinct central disc and thin arms lacking tube feet

Lab Activities:

 The Common Starfish (p248): A external anatomy: p 249; know & aboral surfaces, ma pedicellariae, dermal groove, tube feet, spir 	A <i>sterias</i> v: central disc, arms, oral adreporite, spines, branchiae, ambulacral nes, mouth	preserved Asterias
internal anatomy: p 251; know pyloric ceca, cardiac radial nerves, eyespot ring canal, radial can	v: coelom, pyloric stomach, stomach, gonads, nerve rin s, madreporite, stone cana als, ampullae, tube feet	g, I,
 cross section of starfish arm (p know: coelom, gonad ambulacral gr nerve, tube fee 	253 & fig 16-4): s (if visible), pyloric caecu oove, radial canal, radial t, ossicles	slide: starfish ray, cs m,
 A Brittle Star, Class Ophiuroide external anatomy only: & plates, mad mouth 	a (p 253) central disc, arms, ossicles reporite plate, bursal slits,	preserved specimens
 A Sea Urchin, Class Echinoidea external anatomy only: tube feet, amb Aristotle's Lan 	(p256) test, spines, pedicellariae, ulacral region, mouth, ntern	preserved urchins & sand dollars
compare the general sha urchin with thos	ape and structures of a sea se of a sand dollar	
5. A Sea Cucumber, Class Holothu external anatomy; know feet, sole	<pre>uroidea (p 259) w: mouth, tentacles, tube</pre>	preserved sea cucumbers
internal anatomy; know intestine, cload gonad, respira	7: coelom, pharynx, stomach ca, anus, muscle bands tory tree	I ,
Demonstrations:		
Echinoderm Development		
a. Bipinnaria Larva -be able to recognize th echinoderms -note that it is bilaterally	slide : e bipinnaria larva as the ma y symmetrical	bipinnaria larva in larval form of

b. Young starfish

ing starfishslide: young starfish, wm.-the young starfish is the radially symmetrical postlarval stage of
echinoderms that forms directly from the bipinnaria larva

-note the development of the endoskeleton and the ambulacral grooves in the arms

• The Classes of Echinoderms

illustrations, dried & preserved specimens, fossils

-be able to distinguish between the different classes and to classify the various fossil and extant specimens available

Notebook Suggestions:

- → How, specifically, do members of each class differ from each other in anatomy; ie. what structures are unique to each class or absent in each class.
- \rightarrow How do echinoderms differ from the annelid-mollusc-arthropod group?
- \rightarrow Draw a pedicellaria
- \rightarrow Draw tube feet

Disposal:

*Dispose of dissected starfish in "scraps" bucket

*DO NOT discard other specimens, return brittle stars, sea urchins and sea cucumbers to proper dish or tray