Membranes, Glands & Skin

cells → tissues → organs

Organs → groups of tissues working together to perform a common function

by definition, some of the simplest organs are membranes and glands

neither fits the definition of organ very well, there are often exceptions

often considered as parts of other organs but as a group of tissues working together they can be thought of as organs in their own right as well

Membranes

different from cell membranes

most membranes consist of at least 2 different tissues: epithelial connective

usually considered part of another organ

Kinds of Membranes in the Body:

1. Mucous

 lines passages of all organs that open to outside of the body

 consists of an epithelial sheet underlain by a layer of loose areolar connective tissue called the lamina propria

 in the mucous membrane of the digestive system the lamina propria rests on a layer of smooth muscle cells.

 contain specialized cells called goblet cells that secrete the mucus

 mucus is made of glycoprotein mucin - has 4 subunits

 Functions:

 1. mucus traps particles to keep them from getting into lungs
 some pulmonary diseases are associated with too much mucus; cystic fibrosis, asthma, bronchitis

 2. coats olfactory receptors
 → molecules must dissolve in it to be detected
 → no mucus no smell

 3. lubricates food in mouth for easier swallowing

 4. protects lining of stomach and intestine from digestive juices
 too little mucus → ulcers, heartburn, etc

2. Serous

 lines closed ventral cavities of the body; pleural, pericardial and abdominopelvic cavities

 simple squamous epithelium on areolar tissue

 secretes serous fluid for lubrication

 thorax = pleura
 abdominal = peritoneum
 heart = pericardium

 parietal vs visceral

3. Synovial

 loose connective tissue only; no epithelial tissues
 → not technically an ‘organ’

 lines cavities of moveable joints

 secretes fluid = synovial fluid

 → reduces friction at moveable joints

 also forms fluid filled sacs around joints = bursae
 → reduces friction of muscles, tendons and ligaments moving

4. cutaneous

 = integumentary system
 = skin

 covers outer surface of body
Glands

gland = cell or organ that secretes substances for use in the body or the elimination of wastes

some are unicellular glands

→ isolated gland cells in epithelial tissues

individual gland cells (=goblet cells) are sometimes important components of mucous membranes

e.g. goblet cells in in respiratory and digestive systems

→ between columnar cells that serve other functions

→ they produce mucin which mixes with water to produce a thick slimy mucus for protection

e.g. the digestive tract has many isolated endocrine cells that secrete hormones that control digestion

most glands are multicellular glands consisting of sheets of epithelial tissue that invaginate to create multicellular “organs”

multicellular glands can be considered organs since they are usually composed of:

→ epithelium walled ducts and secretory cells

→ surrounded by supported connective tissues supplied with blood vessels and nerves

multicellular glands can be exocrine or endocrine:

Exocrine Glands

secrete products onto the skin or into body cavities (e.g. digestive tract)

exocrine glands have 2 basic parts:

→ an epithelium walled duct that carry their products to the epithelial surface

→ a secretory unit consisting of secretory epithelium

→ also, usually contain supportive connective tissue carrying blood vessels and nerves

→ often, the connective tissue forms a fibrous capsule that extends into and partitions the gland into subdivisions or lobes

→ simple vs compound: unbranched vs branched ducts

→ tubular vs acinar: gland same diameter throughout vs saclike gland area

Types of Secretions

1. Serous Glands

produce thin watery fluid

e.g. perspiration, milk, tears, digestive juices

2. Mucous Glands

secrete glycoprotein called mucin

after secretion mucin absorbs water and becomes mucus

→ e.g. in tongue and roof of mouth

3. Mixed Glands

produce both types of secretions

→ e.g. submaxillary and sublingual glands

4. Cytogenic Glands

release whole cells

→ e.g. testes and ovaries release sex cells

Methods of Secretion

1. Merocrine (eccrine) glands

most glands

→ release secretions by exocytosis

Apocrine glands misnomer for some of these

→ e.g. tear glands, pancreas, gastric glands

2. Holocrine Glands

very few glands are this type

→ cells accumulate products

→ then whole cell disintegrates

→ secretion is mixture of cell fragments and product

→ e.g. oil glands of scalp, some glands in eyelids

Endocrine Glands

ductless glands

→ they secrete their products directly into surrounding capillaries

→ their main products are hormones that travel through the blood to trigger a reaction in specific target organs
Skin (Integumentary System)
can be considered an organ or an organ system
body's largest organ
→ organ of greatest surface area: 15-20 sq ft. (1.5-2 m²)
~7% of body weight
very complex:
per sq inch:
15 ft blood vessels
4 yds nerves
650 sweat glands
100 oil glands
1500 sensory receptor cells
>3 million cells total

General Functions:
1. acts as a protective barrier
 mechanical
 chemical
 bacterial → acid mantle
 UV → melanin pigment
desiccation → keratin

2. temperature homeostasis
 > temp → sweat glands, flushing
 < temp → arrector pili, pale

3. excretion of metabolic wastes
 affects fluid & electrolyte balance
 sweat glands release:
 water, salts, ammonia
 oil glands release:
 lipids, acids

4. sense of "touch"
 pressure
 light touch
 heat
 cold
 pain

5. production of vitamin D
 vitamin D precursor (7-dehydrocholesterol; also a cholesterol precursor) passes through capillaries in skin and light converts it to vitamin D

Layers of Skin:
epidermis
dermis
hypodermis

Epidermis
stratified squamous epithelium
avascular (= no direct blood supply)
upper layers dead, filled with keratin (waxy protein)
lower layers living cells
replaced every 35-45 days
subdivided into 5 identifiable layers:

a. stratum basale (str. germinativum)
 lowermost layer of epidermis → single cell layer thick
 composed of several types of cells:
 keratinocytes → produce keratin a waxy fibrous protein
 most common kind of cell in epidermis
 melanocytes → contain pigment = melanin
 ~1/4th of all cells in this layer in all races
 darker skin has more and darker pigment, not more melanocytes
 pigment helps prevent damage to skin cells
 → black people rarely have skin cancer
 Merkel's cells → touch
 sit on basement membrane
 → only cells that get adequate nutrition and oxygen by diffusion from tissues below
 actively dividing cells
b. stratum spinosum
 several layers thick
 less mitosis
 contains many spindleshaped extenskons of cells in tissue preparations (not in the living cells)
 scattered within are star-shaped dendritic cells
 part of the immune system
 they remove foreign proteins that have invaded the epidermis and use these proteins to trigger a larger immune response if necessary
c. stratum granulosum
 very thin; 2-3 cell layers thick
 as cells move up from str. basale they die & get flatter and thinner
 keratinization begins here
 also has dendritic cells
d. stratum lucidum
 thin translucent band of keratinized cells
 only found in thick areas of epidermis:
soles of feet
palms of hand

e. stratum corneum
 thickest of all layers; 3/4ths the thickness
 of epidermis
 20-30 cell layers thick
 dead cells completely filled with keratin (=horny)
 water resistant
 main protection against biological and chemical assault
 takes keratinocytes 30-40 days from their formation in
 str. basale until they flake off from the str. corneum
 in a lifetime we shed abt 40 lbs of skin cells

cells of epidermis:
 1. stem cells \(\rightarrow\) undifferentiated cells found only in
deepest layer
 2. keratinocytes \(\rightarrow\) most cells in epidermis
 synthesize keratin
 3. melanocytes \(\rightarrow\) also in deepest layer
 synthesize pigment melanin
 4. Merkel cells \(\rightarrow\) touch receptors, attached to nerve cell
 5. dentritic cells (Langerhans cells) \(\rightarrow\) found in str.
 spinosum and str. granulosum
 are macrophages that stand guard against toxins,

Dermis (=hide)
 strong, flexible, connective tissue
 gives skin its strength and resilience
 gel-like matrix
 contains collagen, elastic and reticular fibers
 rich in nerves, receptors, blood vessels, lymph
 vessels
 hair follicles and sweat glands extend into it
 two layers:
 a. papillary layer
 mainly areolar connective tissue
 lots of blood vessels
dermal papillae:
capillary loops
sensory cells
produce finger prints
 b. reticular layer
 mainly dense (irregular connective tissue)

Subcutaneous Layer
 = hypodermis or superficial fascia
 below skin
 mainly adipose tissue (ie subcutaneous fat)
 insulation
 infants and elderly have less of this than adults and
 are therefore more sensitive to cold

Skin Color
due to combination of three different pigments
melanin
melanin is produced by special pigment cells
 = melanocytes in the stratum basale
 yellow, orange, brown or black pigments
 racial shades due mainly to kinds and amount of melanin
 pigments
 freckles & moles = local accumulation of pigments
 also, amount varies with exposure to sun=suntan
 darker skin color may protect agains UV radiation or protect folic
 acid (a B vitamin) circulating in the blood
 however darker skin inhibits the synthesis of vitamin D

“Skin Markings”
skin is marked by many lines, creases and ridges
friction ridges: markings on fingertips characteristic of primates
 allow us to manipulate objects more easily
flexion lines: on flexor surfaces of digits, palms, wrists, elbows
 etc; skin is tightly bound to deep fascia at these points
freckles: flat melanized patches vary with heredity or exposure
to sun

Skin Color & Texture in Diagnosis
cyanosis = bluish cast → poor oxygenation
erythema = redness → emotional, hypertension, inflammation
pallor = paleness → emotion, anemia, low blood pressure
jaundice = yellowing → liver disorder, bile pigments in blood
hematoma = "black & blue marks" indicating clotted blood from damaged blood vessels; eg. bruises
bronzing = Addison’s disease, adrenal cortex
bruising (hematoma)= escaped blood has clotted hematomas → deficiency in Vit C or hemophilia
leathery skin = overexposure
clumping of elastin fibers
depressed immune system
can alter DNA to cause skin cancer
photosensitivity = to antibiotics & antihistamines

"Derivitives of skin"
during embryonic development 1000’s of small groups of epidermal cells from stratum basale push down into dermis to form hair follicles and glands
humans are born with as many follicles as they will ever have

1. Hair
hairs are among the fastest growing tissues in the body
covers entire body except palms, soles, lips, nipples, parts of external genitals

eg ~ 55-70 hairs/cm² on trunk, arms and legs
~10x’s as many on face; ~30,000 hairs in man’s beard; ~100,000 hairs on scalp
numbers don’t differ much between individuals, only texture and pigmentation

hormones account for the development of "hairy" regions:
eg. head, axillary and pubic areas

baldness: genetic; stress or trauma; treated with minoxidil
different kinds of hairs with different functions (esp in other mammals; not as much in "naked ape")

lanugo → fine, downy, unpigmented hair of fetus
velvus → fine hairs replace lanugo at birth, also fine, unpigmented;
~ 2/3¹⁄³ of women’s hair 1/10th of men’s hair

终端 hairs (protective hairs) → eyelashes, nose, ears;
after puberty axillary and pubic hair

formation of hair is similar to epidermis
heavily keratinized

hair follicles consists of:
shaft: visible part
root: growing part
follicle: sheath surrounding root
papillae: vascularized, growing part of hair
Arrector Pili muscles, attached to follicle, causes hair to stand on end (cold, fright)

oil glands: ≥ 2/follicle
hair receptor: entwines each follicle, responds to hair movements

color of hair:
depends on kinds (yellow, rust, brown and black)
and the amount and kind of melanin
cortex of shaft contains 2 forms of melanin:

eumelanin → brownish black
pheomelanin → reddish yellow

eg. brown and black hair rich in eumelanin
eg. red hair more pheomelanin, less eumelanin
eg. blond hair intermediate pheomelanin and very little eumelanin
eg. gray and white hair scarcity or no melanin and air in medulla of hair shaft

texture of hair:
related to differences in cross-sectional shape
eg. straight hair is round
eg. wavy hair is oval
eg. tightly curly hair is relatively flat

2. Nails

scale-like modification of the epidermis
fingernails and toenails are clear, hard derivatives of stratum corneum

very thin, dead, scaly cells, densely packed together

corresponds to hoof or claw of animals
most mammals have claws, flat nails are a primate characteristic

more fleshy and sensitive fingertips

still can be used for digging and picking apart food, etc

features:
nail matrix: growth zone beneath proximal skin

nail bed composed of stratum basale

nail plate: visible portion of nail

fingernails grow ~1 mm/wk; toenails more slowly

adding gelatin to diet has no effect on growth or hardness of nails

appearance of nails has diagnostic value:
eg. spoonlike, flat, concave \(\Rightarrow \) may indicate iron deficiency
eg. clubbed or swollen fingertips \(\Rightarrow \) long term hypoxemia
from eg congenital heart defects and emphysema

3. Skin Glands
 a. Oil Glands (Sebaceous Glands, holocrine)
 2 or more per follicle
 keeps hair soft and pliable
 esp on face and scalp
 not on palms, soles or dorsal side of feet
 reduces heat loss; lipids are poor heat conductors
 helps prevent water evaporation
 become active at puberty; secrete sebum (breakdown products of dead cells) \(\Rightarrow \) acne
 b. Sweat Glands (sudoriferous or eccrine glands)
 \(\sim \) 3 Million total on skin; \(\sim \) 3000 sweat glands/inch\(^2\)
 most numerous on palms, soles, forehead, armpits
 essentially a tiny coiled tube that opens to skin surface
 helps maintain temperature and fluid/electrolyte balance
 \(\Rightarrow \) heat \(\Rightarrow \) sweat \(\Rightarrow \) evaporative cooling
 c. Scent Glands (apocrine glands)
 modified sweat glands \(\Rightarrow \) scent, pheromones
 much less common; confined to axillary and genital area
 their ducts empty into hair follicles
 secretions contain fatty acids and proteins in addition to “sweat”
 respond especially to stress and sexual stimulation
 d. Mammary Glands
 modified sweat glands; produce milk
 e. Ceruminous Glands
 modified sweat glands in external ear canal
 secrete waxy pigmented cerumin for protection
 \(\Rightarrow \) traps dust and particles

Skin Imbalances & Aging

the skin can develop \(> \) 1000 different ailments

the most common skin disorders result from allergies or infections

less common are burns and skin cancers

A. Allergies
 Contact Dermatitis
 allergic response
 eg. poison ivy, metals, etc

B. Infections
 1. viral
 eg. cold sores
 herpes simplex
 especially around lips and oral mucosa
 2. Fungal
 eg. athletes foot
 3. Bacterial
 eg. boils and carbuncles
 inflammation of hair follicle and sebaceous glands
 esp on dorsal side of neck
 eg. impetigo
 Streptococcus infection

C. Genetic Diseases
 1. Psoriasis
 chronic, noninfectious skin disease
 skin becomes dry and scaly,
 often with pustules
 many varieties
 cycle of skin cell production increases by 3-4x’s normal
 stratum corneum gets thick as dead cells accumulate
 seems to be a genetic component
 often triggered by trauma, infection, hormonal changes or stress
 2. Hypertrichosis (human werewolves)
 patients show dense hair growth on faces and upper bodies
 due to malfunction of gene on x chromosome
 \(\Rightarrow \) a gene silenced during evolution has been reactivated

D. Burns
 too much sunlight or heat
categorized by degree of penetration of skin layer
 1\(^{st}\) degree burns
 skin is inflamed, red
 surface layer of skin is shed
 2\(^{nd}\) degree burns
 deeper injury
 blisters form as fluid builds up beneath outer layers of epidermis
 3\(^{rd}\) degree burns
 full thickness of skin is destroyed
 sometimes even subcutaneous tissues
 results in ulcerating wounds
 typically results in catastrophic loss of fluids:
 dehydration
 electrolyte imbalances
also highly susceptible to infections
slow recovery (from cells of hair follicles if they
survive; otherwise must heal from margins of
wound)
may require:
autografts
cadaver skin
pig skin
prognosis may depend on extent of damage
extend of burn damage estimated by “rule of 9’s”
head, arms ~9% of skin surface
front and back of torso, each leg ~18% of skin surface
groin ~1% of skin surface

E. Skin Cancer

Skin cancer is the most common form of cancer in US
caused by excessive or chronic exposure to UV,
xrays or radiation
→ people with light skin and exposed to lots of sunlight are
most prone to skin cancers
most forms progress slowly and are easily treated
a few are deadly

1. Actinic keratosis
 small scaly spots most common on face, lower arms
 and hands
 untreated may become skin cancer

2. Basal Cell Carcinoma
 least malignant → rarely spreads
 most common
 → often caused by long term sun exposure
 esp on head, neck and hands
 sometimes shows as a reddish or flesh-colored bump
 that wont go away; sometimes bleeds
 stratum basale cant form keratin

3. Squamous Cell Carcinoma
 usually appears as a bump or red, scaly patch
 typically on ears, face, lips or mouth
 cancer of the cells in stratum spinosum
 usually induced by sun
 cells grow rapidly and grow into the lymphatic tissues
 can develop into large masses and can metastisize
 when found early cure rate is 95%

4. Malignant Melanoma
 most deadly form of skin cancer
 → kills 7,300/yr in US
 cancer of pigment cells = melanocytes
 rare ~1% of skin cancers
 may appear suddenly or appear near a mole
 sun exposure and heredity are factors
 deadly, poor chance of cure once it develops
 often begins with moles
 warning signs include changes in moles, scaliness,
 oozing, bleeding, itchiness, or tenderness

F. Aging Skin

effects often become noticeable by late 40’s

Hair
thinner and grayer as melanocytes die and mitosis slows

Oil glands
sebaceous glands atrophy
skin and hair become drier

Skin Layers
mitosis declines, collagen is lost from dermis
skin becomes thinner and translucent
looser and sagging as elastic fibers are lost and dermal
papillae smooth out
fewer blood vessels and those remaining are more fragile
more bruising, slower healing and rosacea → tiny
dilated blood vessels esp in nose and cheeks
age spots → accumulation of pigment cells
loss of immune cells and fibroblasts makes skin more susceptible
to recurring infections
thermoregulation is less efficient due to loss of blood vessels and
 glands → more vulnerable to hypothermia and heatstroke

photoaging = an acceleration of skin aging due to overexposure
to sun (UV)
accounts for 90% of the changes that people find medically
troubling or cosmetically disagreeable

G. Autoimmune Disease

eg. alopecia areata
causes hair to fall out in small round patches
~2% of population (4.7M in US) have some form of it
hair loss is usually short term and limited to a few patches
in rare cases causes permanent loss of all body hair

www.naaf.org

Clinical Terms:

Necrosis – cellular or tissue death, gangrene
Biopsy – tissue analysis