Muscular System

General Functions:
1. movement
 voluntary – skeletal muscles
 involuntary – internal organs, heart
2. Posture
 sustained partial contractions
3. Heat Generation
 muscles comprise 40% of body mass
 metabolism requires lots of energy (ATP)
 for movement
 \(~25\% = \text{energy of movement}\)
 \(~75\% = \text{heat energy}\)

Muscle Organs:
almost 700 muscle organs in body
 range from extremely small
 to broad flat sheets

as organs each consists of several kinds of tissue:
1. fibrous connective tissue
2. nervous tissue
3. muscle tissue

1. Fibrous Connective Tissue
 superficial fascia beneath skin
 deep fascia below this is part of muscle organs
 continuous sheath of tissue enclosing
 individual cells = endomysium
 fascicles = perimysium
 whole organ = epimysium
 very tough and strong yet flexible
 collagen fibers mostly
 extends beyond muscle and attaches muscle to
 bone or to other muscles
 tough strap = tendon
 broad sheet = aponeurosis
 tendons are continuous with periosteum of bones
 very strong, rarely broken (instead are torn from bone)
 tendons are often surrounded by tendon sheath
 of synovial membrane
 fluid lubricates tendons to reduce friction
 also are synovial sacs = bursae
 scattered between tendons and muscles
 wherever there is lots of friction and tension
2. Nervous Tissue
skeletal muscles are innervated by
somatic motor neurons (voluntary)
will not contract without stimulation
connection between neuron and muscle cell
= neuromuscular junction
at motor end plate
not a direct connection,
synapse or gap
neurotransmitter, Acetylcholine, is released
NT crosses synapse to trigger contraction
(30-40 M ACh receptors/motor end plate)
binding opens channels→ creates action potential

3. Muscle Tissue
close to half of body consists of muscle tissue
elongated cells, spindle shaped, up to 1 ft long
= muscle fibers
very little matrix, instead embedded in framework
of fibrous connective tissue
highly contractile and elastic
all cells contract to some degree, but muscle cells
are much stronger and contract much more efficiently
→ calf muscles can support 1 ton
muscle cells stop dividing at birth (# fixed at birth)
but each cell can expand greatly in volume
development is affected by sex hormones
→ males’ muscles respond better than females’
to exercise
three types of muscle tissue:
striated: most abundant, voluntary
smooth: internal organs
cardiac: heart

Muscle Cell Anatomy (striated muscle tissue)
some cell structures have taken on new functions:
cell membrane = sarcolemma
cytoplasm = sarcoplasm
ER = sarcoplasmic reticulum

several nuclei (skeletal muscle)

lots of mitochondria

T tubules – tunnel-like infoldings of sarcolemma
Myofibrils

- regularly overlapping filaments (in striated mm)
- various bands and zones
- one set = sarcomere

thick filaments → myosin (200 molecules/filament)
thin filaments → actin, troponin, tropomyosin

Muscle Cell Contraction:

1. nerve impulse arrives at neuromuscular junction
2. ACh is released and diffuses across synapse and initiates an impulse
3. impulse travels across sarcolemma and into T tubules and triggers release of Ca++ from SR
4. Ca++ acts as a switch:
 - without Ca++ → prevents interaction between actin & myosin
 - with Ca++ → allows interaction
5. Myosin binds with actin in ratchet-like mechanism pulls thin filaments toward thick filaments
6. Thick & thin filaments telescope into each other causing shortening of muscle fibers
 - contraction
 - requires lots of ATP:
 ATP is needed for both attachment and release of each myosin head

Muscle Organ Physiology

When muscle cell is stimulate by a neuron it is an

“all or none” contraction
→ completely contracted or completely relaxed

size of stimulus doesn’t matter

skeletal muscles contract only if stimulated
- nervous
- electrical
- chemical
- injury
Twitch

single stimulus \rightarrow single contraction

- **latent** (2ms)
- **contraction** (0-100ms)
- **relaxation** (0-100ms)
- **refractory** (5ms)

stimulus must be above threshold

greater stimulus \neq greater contraction

length of time for twitch may vary depending on size of muscle (.01 - .1 sec) [10 – 100ms]

eg. eye = .01 sec

gastrocnemius = .03 sec

muscle **organs** operate on principle of

"**graded strength**"

based on functional unit of muscle system

= **motor unit**

each muscle is composed of 1000’s of motor units

motor unit = individual motor neuron and all muscle cells that it innervates

the axon of a motor neuron usually branches on entering a muscle bundle and a single axon may innervate a few to 100’s of muscle fibers at same time

the fewer muscle cells/motor unit \rightarrow more precise movement the muscle can make

eg. eye: 10-23 fibers/axon
hand: few
abdominal wall: many
gross movements > 500 fibers/axon
gastrocnemius ~1000/axon

whole motor unit responds as “all or none”
muscle cells cannot “partially” contract

each motor unit may have a different threshold

different sized motor units in a muscle organ
to get stronger contraction, more motor units are recruited

>intensity of stimulus
 >motor units are activated
 > greater strength (force) or degree of contraction

each muscle organ can respond with appropriate degree and strength of contraction

can experimentally generate other kinds of contractions:

1. Treppe/Summation
 staircase effect: get increased strength of contraction with repeated stimuli
 muscles don’t begin at maximum efficiency
 eg. athletes warmup exercise

2. Tetanus
 series of rapid stimuli cause sustained contraction of a muscle
 this is normal way muscles work in body, twitch is rare
 eg. twitch of eyelid or facial muscle
tetanic contractions are much more common
can continue to contract until they fatigue
tone = continued partial sustained contraction
 important for posture & as fixator muscles
when skeletal muscles contract but don’t cause movement = isometric
contractions that produce movement = isotonic

typical skeletal movement involve combinations of
isotonic and isometric contractions by various muscles within a group
Some Basic Principles of Muscle Function

1. **Muscles can only pull not push**
 - any movement requires coordination of several muscles (muscle groups)
 - eg. opposing pairs
 - eg. prime mover, synergist (including fixators), antagonists

2. **Bones act as levers and fulcrums;**
 - muscles pull across joints to produce movement
 - Each muscle must attach to at least two different bones on opposite sides of an articulation:
 - **origin** – proximal, less mobile point of attachment
 - **insertion** – distal and more mobile point of attachment

 Usually the muscle that moves a part does not lie over the part it moves

3. **Skeletal muscle are named in several ways:**
 - direction of muscle fibers
 - (rectus, transverse, oblique)
 - location
 - (temporalis, orbicularis oris)
 - size
 - (maximus, minimus)
 - origin and insertion
 - (sternocleidomastoid)
 - number of origins
 - (biceps, triceps)
 - shape
 - (deltoid, trapezius)
 - action
 - (flexors, extensors)

4. **Kinds of body movements:**
 - **flexion/extension**
 - = decrease vs increase angle
 - (inc. hyperextension (beyond anatomical position))
 - **supination/pronation**
 - = rotate outward vs inward
 - **adduction/abduction**
toward vs away from median
levator/depressor
 = produces upward vs downward movement
rotation/circumduction
 = pivot vs describe cone
eversion/inversion
 = turns sole outward vs inward
dorsiflexion/plantarflexion
 = toes up vs toes down
 flexes foot vs extends foot at ankle joint
tensor
 = makes body part more rigid
sphincter
 = decreases size of opening
 (orbicularis)

Examples of Human Muscle Groups:

A. Muscles of the head and neck

sphincters:
 orbicularis oculi (close eye)
 orbicularis oris (close mouth)

chewing:
 closes jaw masseter
temporalis
 orbicularis oris
 opens jaw digastric

facial expression:
 frontalis (raise eyebrows)
 orbicularis oculi (squint)
 orbicularis oris (purse lips, pout, kiss)
 platysma

extrinsic eye muscles

head movement
 sternocleidomastoid (flexes neck, turns head)
 trapezius (extends neck)

B. Muscles that move the pectoral girdle

levate/depress
 trapezius
 latissimus dorsi
C. Muscles that move the upper arm

adduct/abduct
- abduct arm: deltoid
- adduct arm: pectoralis major, latissimus dorsi

flex/extend
- flexors: pectoralis major
- extensors: latissimus dorsi

rotate

D. Muscles that move forearm

flex/extend
- flexors: biceps brachii, brachialis, brachioradialis
- extensor: triceps brachii

rotate

E. Muscles that move wrist and fingers

flexes wrist
- flexor carpi radialis
- flexor carpi ulnaris

extends wrist
- extensor carpi radialis
- extensor carpi ulnaris

flexes fingers
- flexor digitorum

extends fingers
- extensor digitorum

F. Muscles that move rib cage

elevates rib cage
- external intercostals (inspiration)

depresses rib cage
- internal intercostals (expiration)

breathing
- diaphragm

G. Muscles of the Abdominal Wall

layers
- external oblique
- internal oblique
- transversus abdominis
- rectus abdominis (linea alba)
H. Muscles that move thigh

abduct/adduct
- abduct thigh: gluteus medius, minimus, tensor fascia latae
- adduct thigh: adductor longus, adductor magnus, gracilis

flex/extend
- flexors: sartorius, rectus femoris, tensor fascia latae
- extensors: gluteus maximus, biceps femoris, semitendinosus, semimembranosus

rotate

I. Muscles that move lower leg

flexors
- biceps femoris, semitendinosus, semimembranosus, sartorius

extensors
- rectus femoris, vastus lateralis, vastus medialis

J. Muscles that move foot

evert/invert

dorsiflex/plantarflex
- dorsiflexors: tibialis anterior
- plantarflexors: gastrocnemius, soleus
Muscle Cell Physiology

Energy Requirements

active muscle require large amounts of energy
→ large #'s of mitochondria

the main energy producing process is

aerobic respiration:

\[\text{glucose} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{ATP} \]

→ requires lots of glucose
cell can store some **glycogen**

→ this takes lots of oxygen
cell stores some O2 on **myoglobin**

Creatine Phosphate

can’t store ATP but muscle cells do have CP
CP can make ATP in a single reaction
→ instant energy

Anaerobic Respiration

sometimes your muscles need more ATP or quicker than O2 can be delivered
glycolysis can make ATP without oxygen
= **anaerobic respiration**
much quicker (fewer reactions)
much less efficient:
makes only 2 ATP/glucose
produces large amounts of “toxic wastes”

lactic acid → leads to **fatigue**
fatigue creates **oxygen debt**
= the extra amount of O2 needed to
 remove lactic acid, restore creatin phosphate, replace glycogen stores

Aerobic Respiration

requires mitochondria (lots of mitochondria)

main energy providing pathway of all cells including muscle cells

requires lots of O2 (myoglobin, rich blood supply)
produces 38 ATP vs 2 ATP per glucose molecule

as long as cell has enough oxygen it will make ATP aerobically

good for extended activity that is not too strenuous
eg. walking, jogging

if oxygen is not available it shifts to anaerobic respiration

Other Kinds of Muscle Tissues

previous discussion was mainly concerned with skeletal muscle tissue

skeletal muscles are voluntary muscles and can contract very rapidly and strongly

also have smooth and cardiac muscle tissue; both are involuntary

we are generally unaware of our involuntary muscles

only come to our attention as:
 - pounding heart when excited, scared or very active
 - rumbling stomach
 - abdominal cramps
 - etc

Smooth Muscle Tissue

shorter than skeletal muscle cells

mechanism of contraction is similar to skeletal muscle cells

called smooth muscle because myofibrils
 - are not arranged in such a fixed overlapping pattern

 - thick and thin filaments are of varying lengths
 - not organized into sarcomeres

 - ratio of thick to thin filaments is 10-15:1 vs 2:1 in skeletal muscle cells

 - produce weaker contractions
allows smooth muscle cells to stretch to much greater extent than skeletal cells and still be able to contract eg. bladder, uterus

close, and relax much more slowly

not as strong of a contraction

don’t need as much energy
 only need ~1% of energy required by skeletal muscle cells

but since don’t need as much energy, generally don’t fatigue
 → can maintain a contraction much longer than skeletal muscles can

 eg. sphincters
 usually remain contracted to close off various openings; esophagus, anus, stomach, etc

like skeletal muscle fibers they are innervated by nerve cells

Cardiac Muscle Tissue

a unique type of contractile tissue found only in the heart

many of its characteristics are intermediate between striated and smooth muscles

 has striations like skeletal muscle: same myofibril arrangement
 → can contract more strongly than smooth muscle
 → can contract more quickly than smooth muscle
 → requires more energy

 has a single nucleus and is self stimulating like smooth muscle
 → doesn’t need direct innervation of every cell

also has unique features:

 branches that merge with other cells
 intercalated discs between cells instead of tapering to point these are **gap junctions**
→ direct connections between cells
eg. all cardiac muscle cells of atria are interconnected and all cardiac muscle cells of ventricles are interconnected
→ atria contract as a unit
→ ventricles contract as a unit

are self stimulating
 cells contract and relax rhythmically and continuously even without a nervous connection
 \(~ 75 \text{ bpm}\)
innervation just allows control of heart beat:
 speeds up or slows down as needed

cardiac muscle cells are more active than smooth muscle cells yet cannot fatigue or you would die

Disorders of the Muscular System

1. **Convulsions and Spasms**
 abnormal uncoordinated contractions of various muscle groups
2. **Fibrillation** (cardiac muscle)
 asynchronous contraction of individual cardiac muscle cells
3. **Poisons and Toxins**
 mainly affect Ach at NM jcts and in brain where it is used as a NT
 Botulism toxin – blocks release of Ach
 \(\rightarrow \text{paralysis}\)
 Tetanus toxin – interferes with inhibition of antagonists
 \(\rightarrow \text{all muscles contract}\)
 black widow toxin – stimulates massive release of Ach
 \(\rightarrow \text{intense cramping & spasms}\)
 nicotine
 - mimics Ach
 \(\rightarrow \text{prolonges hyperactivity}\)
 atropine, curare
 - prevents Ach from binding to receptors
 \(\rightarrow \text{paralysis}\)
4. **Disuse Atrophy:**
 lack of stimulation or immobilization (splint, cast)
 muscle cell mass can decrease 5%/day down to 25% loss
 muscle tissue replaced by connective tissue (fibrosis)
 can stimulate muscles electrically to reduce atrophy
5. **Fibrosis**
 skeletal muscle fibers degenerate and are replaced by fibrous connective tissue
associated with aging
loss of strength

6. **Hernia**
occurs because of weakness in body wall may
cause rupture
wall is weak because of spaces between bundles of
muscle fibers
undue pressure on abdominal viscera may force a
portion of parietal peritoneum and intestine through these weak
spots
most common at inguinal area

7. **Muscular Dystrophy**
(muscle destroying diseases)
Duchenes: sex linked recessive trait
sarcolemma deteriorates
progresses from extremities upward
most die by 20 yrs old
biotech trying to replace gene that makes
missing protein

8. **Myasthenia Gravis** (Heavy weakness)
weakness of skeletal muscles,
esp face and neck muscles:
drooping eyelids
difficulty talking and swallowing
shortage of Ach receptors → autoimmune disease
prevents fibers from contracting
mostly women, 20-50 yrs old

9. **Steroid abuse**
normally testosterone promotes bone development and muscle
mass

??could megadoses help body builders??

by 2000 nearly 1 in 10 young men have tried steroids
take high doses (to 200mg/d) during heavy resistance training
positive data:
increases isometric strength
rise in body weight
not sure if these changes result in better PERFORMANCE
negative data:
bloated faces
shriveled testes
infertility
liver damage
alters blood cholesterol levels
1/3rd of users exhibit serious mental problems such as
manic behaviors