MATH 2412 – Precalculus – Review for Exam 1

Work these on separate paper and do not write on this sheet. You must show your work.

Each problem represents a concept to review

The table gives the populations of two cities (in thousands) over a 17-year period. Use the table for problems 1 – 3.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>42</td>
<td>46</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>P_2</td>
<td>82</td>
<td>80</td>
<td>76</td>
<td>69</td>
<td>58</td>
</tr>
</tbody>
</table>

1) Find the average rate of change of each population on the following intervals:
 a) 1990 to 2000 b) 1995 to 2007

2) Is P_1 increasing or decreasing? And is the rate of change increasing, decreasing or constant? What does this say about the concavity of the graph of P_1?

3) Is P_2 increasing or decreasing? And is the rate of change increasing, decreasing or constant? What does this say about the concavity of the graph of P_2?

4) Find the formula for the linear function where $g(100) = 2000$ and $g(400) = 3800$

5) Find the formula for the linear function $P = h(t)$ which gives the size of a population that begins with 12,000 members and grows by 225 members each year.

6) Give the linear equation that models the data in the table.

<table>
<thead>
<tr>
<th>t</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(t)$</td>
<td>0.736</td>
<td>0.614</td>
<td>0.492</td>
<td>0.37</td>
</tr>
</tbody>
</table>

7) The table gives the daily low temperature for a week in NYC during July.

<table>
<thead>
<tr>
<th>Date, d</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp, T</td>
<td>73</td>
<td>77</td>
<td>69</td>
<td>73</td>
<td>75</td>
<td>75</td>
<td>70</td>
</tr>
</tbody>
</table>

 a) Is the temperature, T, a function of the date, d? Explain.
 b) Is the date, d, a function of the temperature, T? Explain.

8) For $f(x) = x^2 + 1$

 a) Find the average rate of change between $(-1, f(-1))$ and $(3, f(3))$
 b) Find the average rate of change between $(x, f(x))$ and $(x + h, f(x + h))$

9) The population $P(t)$, in millions, of a country in year t is given by $P(t) = 22 + 0.3t$

 a) What is the country’s initial population?
 b) What is the average rate of change of the population, in millions of people per year?

10) A woodworker sells rocking horses. The start-up costs, including tools, plans and advertising, total $5000. Labor and materials for each horse cost $350.

 a) Find a formula for total cost, C, in terms of the number of rocking horses carved, n.
 b) What is the rate of change of the function C?

11) Find the equation of the linear function g whose graph is perpendicular to the line $5x - 3y = 6$. The two lines intersect at $x = 15$

12) Find the formula for the linear function $h(x)$ whose graph intersects the graph of $k(x) = 30(0.2)^x$ at $x = -2$ and $x = 1$
13) The graph shows the function \(f(x) = 12 - 0.5(x + 4)^2 \) and the linear function \(g \). Find a formula for \(g \).

14) Find the coordinates of the point \(P \) in the figure.

15) A theater manager graphed weekly profits as a function of the number of patrons and found that the relationship was linear. One week, the profit was \$11,328 \) when 1324 patrons attended. Another week 1529 patrons produced a profit of \$13,275.50 \)

a) Find a formula for weekly profit, \(y \), as a function of the number of patrons, \(x \).

b) Interpret the slope and \(y \)-intercept within the context.

c) What is the break-even point (zero profit)?

d) If the weekly profit was \$17,759.50, how many patrons attended the theater?

16) You want to choose one long-distance telephone company from the following options:

- Company P charges \$0.37 per minute
- Company R charges \$13.95 a month plus \$0.22 per minute
- Company S charges a fixed rate of \$50 per month

Let \(P, R, \) and \(S \) represent the monthly charges using each company respectively. Let \(x \) be the number of minutes of long-distance calls per month.

a) Find formulas for \(P, R \) and \(S \) as functions of \(x \).

b) The figure gives the graphs of the functions. Which function corresponds to which graph?

c) When is Company S cheapest?

17) Solve \(f(x) = 6 \) for \(f(x) = \sqrt{20 + 2x^2} \)

Find the domain of the functions in problems 18 – 20.

18) \(f(x) = \sqrt{x^2 - 9} \)

19) \(g(x) = \frac{x + 1}{\sqrt{9 - x}} \)

20) \(h(x) = \frac{2x + 3}{5 - 4x} \)

Use \(f(x) = 1 - x \) to find the following for problems 21 – 24.

21) \(2f(x) \)

22) \(f(x) + 1 \)

23) \(f(1 - x) \)

24) \(\left(f(x)\right)^2 \)

Use \(f(x) = x^2 + 1 \) and \(g(x) = 2x + 3 \) to find the following for problems 25 – 29.

25) \(f\left(g(1)\right) \)

26) \(g\left(f(-2)\right) \)

27) \(f\left(g(x)\right) \)

28) \(g\left(f(x)\right) \)

29) \(f\left(f(x)\right) \) (simplify)

For problems 30 – 32, let \(P = f(t) \) be the population, in millions, of a country at time \(t \) years and let \(E = g(P) \) be the daily electricity consumption, in megawatts, when the population is \(P \). Give the meaning within the context and the units of each function.

30) \(g(f(t)) \)

31) \(f^{-1}(P) \)

32) \(g^{-1}(E) \)
33) Find \(f^{-1} \) for \(f(x) = \frac{3x}{x + 4} \)

34) For \(f(x) = 12 - \sqrt{x} \), evaluate \(f(16) \) and \(f^{-1}(3) \)

Graph the function for problems 35 and 36.

35) \(f(x) = \begin{cases}
 x^2 & \text{for } x \leq 1 \\
 2 - x & \text{for } x > 1
\end{cases} \)

36) \(f(x) = \begin{cases}
 x + 1 & \text{for } -2 \leq x < 0 \\
 x - 1 & \text{for } 0 \leq x < 2 \\
 x - 3 & \text{for } 2 \leq x < 4
\end{cases} \)

Write the formula for the piecewise-defined function shown in the graph for problems 37 and 38.

37)

\[
\begin{array}{c|c}
\hline
x & y \\
\hline
2 & 1 \\
3 & 2.5 \\
4 & 3.5 \\
5 & 7 \\
\hline
\end{array}
\]

38)

\[
\begin{array}{c|c}
\hline
x & y \\
\hline
2 & 1 \\
3 & 2 \\
4 & 3 \\
5 & 5 \\
\hline
\end{array}
\]

39) Use the graph to fill in the missing values.
 a) \(f(0) = ? \) b) \(f(?) = 0 \) c) \(f^{-1}(0) = ? \) d) \(f^{-1}(?) = 0 \)

40) Let \(j(x) = h^{-1}(x) \) where \(h \) and \(j \) are defined for all values of \(x \). Let \(h(4) = 2 \) and \(j(5) = -3 \). Evaluate if possible.
 a) \(j(h(4)) \) b) \(j(4) \) c) \(h(j(4)) \) d) \(j(2) \) e) \(j^{-1}(-3) \) f) \(h^{-1}(-3) \)

41) Find the zeros of \(f(x) = 6x^2 - 17x + 12 \)

42) Complete the square to write the function in vertex form and give the vertex. \(f(x) = 3x^2 - 6x + 5 \)

43) Complete the square to write the function in vertex form and give the vertex. \(g(x) = -3x^2 + 24x - 36 \)
For problems 44 – 47, write the formula for the quadratic function with the given characteristics.

44) Vertex at (1, -2) and y-intercept of -5
45) Vertex at (7, 3) and containing the point (3, 7)
46) The x-intercepts are -1 and 2 and the graph contains the point (-2, 16)
47) There is only one x-intercept at ½ and a y-intercept at 3.

For problems 48 and 49, write the formula of the quadratic function shown in the graph.

50) A tomato is thrown vertically into the air at time $t = 0$. Its height, $h(t)$ (in feet), above the ground at time t (in seconds) is given by $h(t) = -16t^2 + 48t$
 a) Find t when $h(t) = 0$. What is happening to the tomato the first time $h(t) = 0$? The second time?
 b) Evaluate and interpret $h(2)$
 c) What is the concavity of the graph of $h(t)$?