Activity 4.8 Compound Interest

Overview:
The activity explores the value of \(e \) and the relationship between \(ab^t \) and \(ae^{kt} \) by having students calculate the growth factor for an amount of money that is compounded more and more often.

Estimated Time Required: The activity should take approximately 15 minutes.

Technology: Scientific Calculator

Prerequisite Concepts:
- Compound Interest
- Growth factor
- Growth rate

Discussion:
Review converting between \(Q(t) = ab^t \) and \(Q(t) = ae^{kt} \), where \(b = e^k \), and \(k = \ln b \) and the general formula for any quantity that is growing or decaying at a continuous rate \(k \), \(Q(t) = ae^{kt} \), and note that \(e^k \) is the annual effective growth factor.

Point out that the compound interest formula \(A = P \left(1 + \frac{r}{n} \right)^{nt} \) is an example of an exponential formula with initial value \(P \) and growth factor \(\left(1 + \frac{r}{n} \right)^n \). You may want to have students work several compound interest problems like #1, #3, and #5 in the exercise set.

Have student complete the activity and then discuss the fact that the effective rate is 22.14% for the nominal rate of 20% if there were an unlimited number of compounding periods. That is, the effective rate is \(e^{0.20} - 1 \).

Summarize the findings that \(e \) raised to the growth rate gives the annual effective growth factor, the growth factor minus 1 is the growth rate, and that \(A = Pe^{rt} \) is used for calculating compound interest when the quantity is growing or decaying at a continuous rate \(k \). Note that the formula works when \(r \) is negative, which indicates decay.
Activity 4.8 Continuous Growth and the Number e

Because any exponential function can be written as \(Q(t) = ab^t \) or as \(Q(t) = ae^{kt} \), where \(b = e^k \) and \(k = \ln b \), the two formulas represent the same function. We call \(b \) the growth factor, and we call \(k \) the continuous growth rate.

Consider the classic interest problem of an account earning a nominal interest rate of 20% per year, being compounded many times per year. Find the growth factor for the different number of compounding periods in a year and enter them in the following table:

<table>
<thead>
<tr>
<th>Number of Compounding Periods</th>
<th>Growth Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td></td>
</tr>
</tbody>
</table>

What happens as we continue increasing the number of compounding periods?

Does there appear to be a maximum possible effective rate we can earn? If so, what is it?

What is the relationship between \(e \) and the growth factors we calculated above?