Epithelial Cells
in the Urine Microscopic

Microscopic Sediment
- Epithelial Cells

- Epithelial Cells
 - Cells sloughed from the kidney, urethra, bladder and genital track.
 - Unless increased in number or abnormal forms, they are normal part of sediment.
 - May be reported as present or differentiated as to types.

- Epithelial Cells
 - Three major types
 - Classified according to site of origin
 - Squamous
 - Transitional
 - Renal tubular.
Microscopic Sediment
- Epithelial Cells

- Squamous epithelial cells
 - Physically the largest.
 - Small centrally located nucleus
 - Abundant cytoplasm
 - May be rolled-up or folded and appear to be casts.
 - Easy to see under lpm.
 - Origins
 - Lower part of urethra
 - Female vagina
 - Specimen contaminant

- Report as average number seen / lpf.
- See: Urinalysis Reporting Standardization Guide

Sternheimer-Malbin-stained RBCs, WBCs, and Squamous epithelial cells

Sternheimer-Malbin-stained RBCs, WBCs, and Squamous epithelial cells
Microscopic Sediment - Epithelial Cells

- **Squamous epithelial cells**
 - Clue cells - squamous epithelial cells with *Gardnerella vaginalis* bacteria colonizing the cell - a sign of vaginal infection.
 - Wet prep specimen of vaginal scrapings/washings are most often used in diagnosis.
 - Urine specimen may also demonstrate clue cells.

- **Transitional epithelial cells**
 - Line urinary track from renal pelvis to upper portion of the urethra.
Transitional epithelial cells

Microscopic Sediment – Epithelial Cells

- Transitional epithelial cells

Report as average number / hpf
- On left, squamous and transitional cells, hpf, Toluidine blue stain.

Renal Tubular Epithelial Cells (RTEs)
- Line the tubules of the nephron
- Shape varies
 - Depending on exact origin
 - They may be flat, cuboidal, or columnar.
- Larger than leukocytes
- Contain a large round nucleus
Renal Tubular Epithelial Cells (RTEs)
- Most significant of the epithelial cells
- Increased numbers of tubular epithelial cells suggest tubular damage:
 - Glomerulonephritis, acute tubular necrosis,
 - Salicylate intoxication, heavy metal poisoning,
 - Diethylene glycol (antifreeze) poisoning,
 - Kidney transplant rejection, some viral infections
- Can absorb pigments such as hemoglobin & bilirubin
- Can contain vacuoles
 - Non-lipid vacuoles = bubble cells
 - Lipid vacuoles = oval fat bodies

Renal Tubular epithelial cell types
- Proximal tubular renal epithelial cells
 - Rarely found
 - Round eccentric nucleus, granular cytoplasm, may have brushy border.
 - Their long trip from the proximal tubule usually results in cell degenerating (may explain why cytoplasm gets granular).
 - Columnar in shape and may look like small casts
 - Pictures are hpf magnification

- Distal tubular epithelial cells
 - Smaller, round to oval shaped
 - May resemble WBCs, or spherical transitional cells
 - Round eccentric nucleus, granular cytoplasm, may have brushy border.
 - Pictures are hpf magnification
Renal tubular epithelial cell types
- Collecting duct epithelial cells
 - Cuboidal, never round
 - At least one straight edge
 - Eccentric nucleus
 - Three or more cells in clump is renal fragment; often large sheets
 - Proximal and distal RTEs do not do this.
 - Pictures are x400 magnification.

Microscopic Sediment - Epithelial Cells
- Transitional cell (A), Renal epithelial cells (B) and WBCs (C).

Microscopic Sediment - Epithelial Cells
- RTEs; 250x magnification
- Also WBC and RBCs
References

- Susan Strassinger & Marjorie Di Lorenzo, *Urinalysis and Body Fluids*, 5th Ed.
- Mary Haber, MD, *A Primer of Microscopic Urinalysis*, 2nd Ed.
- Zenggang Pan, MD, PhD, Dept of Pathology, U of Alabama at Birmingham
- Department of the Army, Landstuhl Regional Medical Center
- http://www.dcss.cs.amedd.army.mil/field/FLIP%20Disk%204.2/FLIP42.html
- Seattle STD/HIV Prevention & Training Center, Washington State Dept. of Health (clue cells)