Urinalysis and Body Fluids

Unit 2; Session 5

Crystals Found in the Urine
Microscopic Examination - Part A, an Overview

Microscopic Sediment - Urine Crystals

• Urine crystals not found in freshly voided urine.
 • Formation based on
 • Temperature (as specimen cools or is refrigerated)
 • Increased solute concentration, (as indicated by increased specific gravity)
 • pH (acid crystals, alkaline crystals, and some??)
 • Broadly categorized by pH,
 • However, some deviate

Microscopic Sediment - Urine Crystals

• Clinical Significance
 • MOST are NOT clinically significant
 • All have been implicated in calculi / kidney stone formation.
 • Generally, clinically significant crystals are present in freshly voided urine.
 • Patient drugs / medication may cause formation of urine crystals
 • Ampicillin
 • Hypaque
 • Renografin

MOST are NOT clinically significant
• All have been implicated in calculi / kidney stone formation.
• Generally, clinically significant crystals are present in freshly voided urine.
• Patient drugs / medication may cause formation of urine crystals
 • Ampicillin
 • Hypaque
 • Renografin
Microscopic Sediment - Urine Crystals

Classification
- Normal and Abnormal
 - Normal Acidic crystals
 - Normal Alkaline crystals
 - Abnormal crystals - metabolic origin or iatrogenic origin (usually seen in acidic urine)
- Abnormal crystals - metabolic origin or iatrogenic origin (usually seen in acidic urine)

- Microscopic Sediment - Urine Crystals

Identification Characteristics
- Effect of temperature and pH
 - Amorphous urates form in the refrigerated acid urine; will dissolve with heat
 - Amorphous phosphates form in refrigerated alkaline urine; will dissolve in acetic acid – so will RBCs
 - All abnormal crystals are found in acid urine
- pH ** (acid, alkaline or neutral?)
- Morphology (what is the shape and color?)
- Solubility
 - (acid crystals are soluble / go into solution in alkaline environment and alkaline crystals will disappear if the pH becomes acid)

- Microscopic Sediment - Urine Crystals

Identification characteristics
- Polarization and birefringence
 - Aids in crystal identification
 - Uses two polarizing filters that darken the field
 - Crystals that polarize light will reverse the filter's effect.

- Microscopic Sediment - Urine Crystals

Identification characteristics
Polarization (cont.)

Microscopic Sediment
- Urine Crystals

- Birefringence

Microscopic Sediment
- Urine Crystals

- Quantitation
- UA Reporting Standardization Guide
 - High Power Field (hpf)
 - Semi-quantitative terms
 - Trace
 - 1+
 - 2+
 - 3+
 - 4+
 - packed
Microscopic Sediment
- Urine Crystals

• Summary
 - Urinary crystals may be of no significance or may accompany metabolic disorders.
 - Urinary crystals may be present in acidic or alkaline urine.
 - Microscopic evaluation of urine is important for detection of crystals, because no chemical test detects the presence of crystals.
 - Solubility studies and the use of polarized and compensated light help to identify crystals and differentiate them from artifacts.
 - They are reported using semi-quantitative terms.

UP DATE References
- Lillian Mundt & Kristy Shanahan, Graff's Textbook of Urinalysis and Body Fluids, 2nd Ed.
- Susan Strassinger & Marjorie Di Lorenzo, Urinalysis and Body Fluids, 5th Ed.
- Mary Haber, MD, A Primer of Microscopic Urinalysis, 2nd Ed.