Austin Community College
General Chemistry II Syllabus
Fall 2010 (Aug. 23 – Dec. 12, 2010)

Synonym(s) - Section number(s) and Time of class:
CHEM 1312: General Chemistry II Lecture
16394 (006) Lec MW 9:10 am – 10:30 am RGC1 320
16403 (106) Lec MW 9:10 am – 10:30 am RGC1 320
16395 (007) Lec TTh 5:40 pm – 7:00 pm RGC1 314
16404 (107) Lec TTh 5:40 pm – 7:00 pm RGC1 314

Instructor Name: Dr. Ya-Ping Huang
Office Number: RGC 319.1
Phone Number: 223-3323
e-mail address: yphuang@austincc.edu
Webpage: http://www.austincc.edu/yphuang/

Office Hours:
M: 1:20-2:10 pm TTh: 12:00 -1:15 pm, 4:10-5:30 pm
By appointment:
M: 2:10 – 3:00 pm T: 11:00am – 12:00 pm
Th: 11:00am – 12:00 pm F: 9:30 - 11:45 am

Course Description: CHEM 1312 is a continuation of CHEM 1311. The topics include
1. Theories of chemical reactions: kinetics, chemical equilibria, and thermodynamics.
2. Special topics: acid-base theories, electrochemistry, coordination compounds
3. Introductions to organic chemistry and nuclear chemistry.

Prerequisites: (1): MATH 1314, college algebra and
(2): CHEM 1411 (Both lecture and lab components) or CHEM 1311(lecture) and 1111(lab)

Required Texts/Materials
3. A nonprogrammable scientific calculator, to be used in test.
 *** You can use any type of calculator in lecture or lab

Instructional Methodology: This course consists of a lecture and a laboratory section. Grades will be
reported separately.

Course Rationale
This course covers the fundamental facts, laws, principles, theories and concepts of chemistry
necessary for further work in science or science-related subjects.

Common Course Objectives: http://www2.austin.cc.tx.us/chem/curriculum/index.htm
Common course objectives are attached (for lecture only).
Grading Details:

<table>
<thead>
<tr>
<th>Homework assignments</th>
<th>170 pts</th>
<th>A \geq 900 pts and 5th test \geq 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 exams, av.160 pts each</td>
<td>810 pts</td>
<td>B \geq 800 pts</td>
</tr>
<tr>
<td>Quizzes/Attendance</td>
<td>20 pts</td>
<td>C \geq 700 pts</td>
</tr>
<tr>
<td>Total</td>
<td>1000 pts</td>
<td>D \geq 600 pts F < 600 pts</td>
</tr>
</tbody>
</table>

Optional web homework: 48 pts

Course Policies

1. Missed exam policy

 If for any reason you fail to take the test or retest on or before the deadline, you will be given a 3-day extension with penalties as following: 5% off for one day extension, 10% off for two-day extension and 15% off for three-day extension. No re-tests are allowed if you miss test deadline.
 Instructor's signed permission is required for test or retest after the 3-day extension deadline

 Limit for Re-Test: only one retest allowed for each test
 Test Grade with retest: = 0.25 (original test grade) + 0.75 (re-test grade)
 Must show yellow receipt of original test to Testing center when taking retest
 Make sure you are given different form for retest by the Testing Center

2. Policy about late work (if applicable)

 Assignments given in class will be collected on specific days. Internet based homework should be turned in by its deadline (see separate handout). Late assignments of either type will be subject to penalty of one point (or 10% of grade) a day (whichever is less). All class homework turned in must show detailed work to get credit. Assignment more than one week late will not be accepted. Answers to some class assignments will be posted on Blackboard. Answers to the Internet based homework can be downloaded from the website after the deadline. Instructor’s permission is required to submit late web homework. (Late web home work is not allowed if you have already downloaded the answer).

3. Attendance policy

 Students are encouraged to participate in classes and discussions. Detailed attendance records will be kept for each student. If you fail to attend class for 3 consecutive sessions without legitimate excuses, you may be withdrawn from the course by the instructor. However, it is your responsibility to withdraw if you so desire. You can ask the instructor to withdraw you (before deadline) if you have difficulty doing it yourself.

4. Withdrawal deadline: Nov. 18, 2010 (Thursday)

5. Incomplete grade policy

 Incomplete grade will only be granted for medical/emergency reasons. Students must have successfully completed at least 60% of the course materials to get an incomplete.
6. Scholastic dishonesty

"Acts prohibited by the college for which discipline may be administered include scholastic dishonesty, including but not limited to, cheating on an exam or quiz, plagiarizing, and unauthorized collaboration with another in preparing outside work. Academic work submitted by students shall be the result of their thought, research or self-expression. Academic work is defined as, but not limited to, tests, quizzes, whether taken electronically or on paper; projects, either individual or group; classroom presentations; and homework."

The penalty for cheating in the testing center is withdrawal from class or an F grade. Use of programmable calculator will result in a 15% grade penalty.

7. Students with disabilities

"Each ACC campus offers support services for students with documented physical or psychological disabilities. Students with disabilities must request reasonable accommodations through the Office of Students with Disabilities on the campus where they expect to take the majority of their classes. Students are encouraged to do this three weeks before the start of the semester." Students who are requesting accommodation must provide the instructor with a letter of accommodation from the Office of Students with Disabilities (OSD) at the beginning of the semester. Accommodations can only be made after the instructor receives the letter of accommodation from OSD."

8. Academic freedom

"Institutions of higher education are conducted for the common good. The common good depends upon a search for truth and upon free expression. In this course the professor and students shall strive to protect free inquiry and the open exchange of facts, ideas, and opinions. Students are free to take exception to views offered in this course and to reserve judgment about debatable issues. Grades will not be affected by personal views. With this freedom comes the responsibility of civility and a respect for a diversity of ideas and opinions. This means that students must take turns speaking, listen to others speak without interruption, and refrain from name-calling or other personal attacks."

9. Student discipline policy

"Students at the College have the rights accorded to all persons under the Constitution to freedom of speech, peaceful assembly, petition, and association. These rights carry with them the responsibility for each individual to accord the same rights to others in the College community and not to interfere with or disrupt the educational process. As willing partners in learning, it is expected that students will comply with College rules and procedures. ACC students are recognized as responsible persons who neither lose the rights nor escape the responsibilities of citizenship. Enrollment in the College indicates acceptance of the rules set forth in this policy, administered through the office of the Campus Dean of Student Services. Due process, through an investigation and appeal process, is assured to any student involved in disciplinary action."

Course Outline/Calendar

There are five tests for the semester. The first 4 tests will be held in the testing center and one retest is allowed for each one. The last test is to be held in class (no re-test allowed). In order to receive full credit for the test questions you MUST show all your work on the scratch paper provided by the testing center.
Tentative Test Schedule for test and retest and the material covered are as following:

<table>
<thead>
<tr>
<th>Test</th>
<th>Date</th>
<th>Topics</th>
<th>Brown 11/e points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sept. 16 (Th) – Sept. 21 (T)</td>
<td>Chemical kinetics
Chemical equilibrium</td>
<td>Ch. 14
Ch. 15</td>
</tr>
<tr>
<td>2</td>
<td>Oct. 12 (T) – Oct. 18 (M)</td>
<td>Acid/base theories
Acid/base equilibrium</td>
<td>Ch. 16
Ch. 17</td>
</tr>
<tr>
<td>3</td>
<td>Nov. 2 (T) – Nov. 8 (M)</td>
<td>A/B titration, Solubility
Equilibrium, Thermodynamics</td>
<td>Ch. 17
Ch. 19</td>
</tr>
<tr>
<td>4</td>
<td>Nov. 19 (F) – Nov. 24 (W)</td>
<td>Redox (review) Electrochemistry
Coordination Cpd</td>
<td>Ch. 20
Ch. 24</td>
</tr>
<tr>
<td>5</td>
<td>Dec. 8 (W), 9 (Th)</td>
<td>Nuclear chemistry
Organic chemistry & comprehensive</td>
<td>Ch. 21
Ch. 25</td>
</tr>
</tbody>
</table>

Miscellaneous:

1. **Learning lab**: free tutoring for chemistry and other subjects. Check room 212 (233.3367) for individual tutor’s schedule. (MTWTh: 9 am – 9 pm, F: 9 am- noon)

2. **NO FOODS / DRINKS or cellular phone / pager in CLASSROOM**

3. **Testing Center**: Room 127, (MTWTh: 8 am – 8 pm, F: 8 am- 4 pm, S: 9 am – 1 pm)

4. **Tests are available only at the Testing Center at the Rio Grande campus**

5. **Please staple homework pages together with your name and assignment # indicated**

6. Homework submitted for grade need to be legible and neat, points will be deducted if submitted otherwise. Extra point may be given for showing work on scratch paper on test

7. **Your grade will be updated periodically on Blackboard, please check for accuracy**

8. **UT Quest HW**: (still under construction). Unique number: 16394. No Password

 You can obtain a UT EID and enroll by the link http://cns.utexas.edu/quest/support/student/

 Student overview: http://cns.utexas.edu/quest/student/aboutQuest.pdf

 You can follow steps on Blackboard (UT Quest login) to enroll in Quest

9. **You must enroll and wait for approval before accessing any homework**

10. **I may ask you to verify your work on web HW**

11. **Withdraw deadline**: Nov. 18, 2010 (Thursday)

12. **Late homework/assignment should be turned in to Room 204 (Duplication center) –the “Student Paper” tray where they can be stamped and logged**

13. **For emergency or last minute information, please check my web page or Blackboard. I will send mass e-mail to ACC e-mail addresses when possible**

14. **Student Support and Success System**: http://www.austincc.edu/support/

 - The web address for student services is: http://www3.austincc.edu/evpcss/newsemester/pdfs2/studsvcs.pdf
 - The ACC student handbook can be found at: http://www.austincc.edu/handbook/
 - Student resources: http://www.austincc.edu/current/
Testing Center (http://www.austincc.edu/testctr/) Policy

Only non-programmable calculators are allowed in the Testing Center for this class.

Student Summary Guide For Use Of ACC Academic Testing Centers:

All students must read the Student Guidelines prior to arrival at the Testing Center (http://www.austincc.edu/testctr/studentarea.php).

1. You are required to have a current ACC photo student I.D, available only through the Admissions & Records Office. Alternate ID forms are not accepted. You also need course abbreviation and number (CHEM 1312), synonym & section number, test number and instructor’s name to request a test.

2. You are required to complete the Test Request Form. For re-testing, you must provide the yellow student copy from the original test. Initial and re-testing on the same day is not allowed. If the test deadline has passed, you must also bring written permission from your instructor.

3. Any student suspected of and/or caught cheating (including the use of unauthorized materials during testing) is considered scholastic dishonesty. You will be referred to the appropriate administrator. Disciplinary actions for scholastic dishonesty range from exclusion from Academic Testing Centers to expulsion from ACC. You may refer to the ACC Student Handbook for disciplinary policies and procedures. You may also be subjected to disciplinary action for behavior that significantly interferes with or disrupts Academic Testing Center operations.

4. Bring only the materials allowed by your instructor for the given test. Approved items such as English dictionaries, Scantron answer sheets, and all types of paper are provided by the Academic Testing Centers. All other items (pagers, cell phones, laptops, purses/wallets, calculator/pencil cases, food/tobacco items, etc.) must be stored elsewhere, in a locker, or shelved in the Academic Testing Center at your own risk. Children are not allowed in the Academic Testing Centers.

5. You are responsible for the return of your locker key to Testing Center staff. Your property will not be surrendered in the case of a lost key until a report is filed with Campus Police. The incident will be reported to Student Services and a hold will be placed on your record until the key is returned or replaced.

6. You may be assigned seating in the Academic Testing Center. When the Academic Testing Center is full, you will be placed on a waiting list, issued a ticket, or be asked to line up outside the Academic Testing Center. Only one test is allowed per sitting. You may not leave the Academic Testing Center for breaks while testing (except for a medically verified reason), otherwise, your test must be turned in to be graded.

7. Testing for a grade of Incomplete requires an Incomplete Grade Form or grade slip verification from Admissions and Records and instructor signature.

8. If an answer key is available, your test will be graded and you will be given your raw score. Once the test has been scored, it cannot be reviewed or examined again in the Academic Testing Center; contact your instructor for feedback. Keep the yellow copy of the Test Request Form for the remainder of the semester for proof you took the exam and that the grade was posted.

9. All exams must be turned in no later than thirty (30) minutes after closing – NO EXCEPTIONS. No students will be admitted and no distribution of new test materials will be allowed after closing time. Hours of operation for the Academic Testing Centers are located at http://www.austincc.edu/testctr/.

August 2006
CHEM 1312 Lecture Schedule and Reference to textbook:
Fall 2010 (Aug. 23 – Dec. 12, 2010)

Please note: schedule may subject to changes

<table>
<thead>
<tr>
<th>Date</th>
<th>Subjects</th>
<th>Brown 11th ed</th>
<th>Whitten 8th ed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A23,24 Introduction & Math Review</td>
<td>Appendix A</td>
<td>Appendix A</td>
</tr>
<tr>
<td>2</td>
<td>A25,26 Reaction rate</td>
<td>14.1-14.2</td>
<td>16.1-16.2</td>
</tr>
<tr>
<td>3</td>
<td>A30,31 Rate laws: rate vs. concentration, conc. vs. time</td>
<td>14.3-14.4</td>
<td>16.3-16.4</td>
</tr>
<tr>
<td>4</td>
<td>S1,2 Kinetic theory of reaction rates, Arrhenius equation</td>
<td>14.5</td>
<td>16.5-16.6, 16-8</td>
</tr>
<tr>
<td>5</td>
<td>S7,8 Reaction mechanism & catalysts</td>
<td>14.6-14.7</td>
<td>16-7, 16.9</td>
</tr>
<tr>
<td>6</td>
<td>S9,13 Equilibrium concept and calculation</td>
<td>15.2-15.5</td>
<td>17.1-17.5</td>
</tr>
<tr>
<td>7</td>
<td>S14,15 Equilibrium calculation and La Chatelier's principle</td>
<td>15.6-15.7</td>
<td>17.6-17.12</td>
</tr>
<tr>
<td>8</td>
<td>S16,20 Arrhenius, Bronsted-Lowry acid & strength</td>
<td>16.1-16.2</td>
<td>10.1-10.6, 18.1</td>
</tr>
<tr>
<td>9</td>
<td>S21,22 Acid strength and structure, Lewis acids and bases</td>
<td>16.10-16.11</td>
<td>10.7-10.10</td>
</tr>
<tr>
<td>10</td>
<td>S23,27 Dissociation of water, pH, weak acids and bases</td>
<td>16.3-16.8</td>
<td>18:2-5</td>
</tr>
<tr>
<td>11</td>
<td>S28, 29 Acid-base property of salt solutions, buffer</td>
<td>16.9, 17.1-17.2</td>
<td>18.6-11, 19.1-3</td>
</tr>
<tr>
<td>12</td>
<td>S30,04 Indicators, Classification of acid/base/salt</td>
<td>p.150-151</td>
<td>19.4, 18.7-11</td>
</tr>
<tr>
<td>13</td>
<td>O5,6 Classification of acid/base/salt</td>
<td>18.7-11</td>
<td>18.7-11</td>
</tr>
<tr>
<td>14</td>
<td>O7,11 Acid-base titrations</td>
<td>17.3</td>
<td>19.5-19.7</td>
</tr>
<tr>
<td>15</td>
<td>O12, 13 Review, catch-up</td>
<td></td>
<td>19.8</td>
</tr>
<tr>
<td>16</td>
<td>O14,18 Solubility equilibrium</td>
<td>17.4-17.5</td>
<td>20.1-4</td>
</tr>
<tr>
<td>17</td>
<td>O19,20 Simultaneous equilibrium, dissolving precipitates</td>
<td>17.6</td>
<td>20.5-20.6</td>
</tr>
<tr>
<td>18</td>
<td>O21,25 Thermodynamics: 1st law, enthalpy</td>
<td>5.1-5.4</td>
<td>15.1-15.7,15.10</td>
</tr>
<tr>
<td>19</td>
<td>O26,27 Enthalpy calculation, entropy, 2nd law</td>
<td>5.5-5.7,19.1-19.3</td>
<td>15.8-15.15</td>
</tr>
<tr>
<td>20</td>
<td>O28,N1 Gibbs free energy and temp, equilibrium constant</td>
<td>19.4-19.7</td>
<td>15.16-15.17, 17.13</td>
</tr>
<tr>
<td>21</td>
<td>N2,3 Oxidation-reduction reactions, voltaic cell</td>
<td>20.1-20.3</td>
<td>11.4, 21:1-6</td>
</tr>
<tr>
<td>22</td>
<td>N4,8 Cell EMF and free energy change</td>
<td>20.4-20.5</td>
<td>21.8-21-16</td>
</tr>
<tr>
<td>23</td>
<td>N9,10 Nernst equation, electrolysis</td>
<td>20.6, 20.9</td>
<td>21.19-21.21</td>
</tr>
<tr>
<td>25</td>
<td>N16,17 Crystal field theory, color & spectrochemical series</td>
<td>24.5-24.6</td>
<td>25.8-25.9</td>
</tr>
<tr>
<td>26</td>
<td>N18, 22 Organic chemistry: structure and nomenclature</td>
<td>25.1-25.2</td>
<td>27.1-27.15</td>
</tr>
<tr>
<td>27</td>
<td>N23, 24 Organic chemistry</td>
<td>25.3-25.4</td>
<td>27.1-27.15</td>
</tr>
<tr>
<td>29</td>
<td>D1, 2 Rate of decay, fusion, fission</td>
<td>21.6-21.8</td>
<td>26.10-26.16</td>
</tr>
<tr>
<td>30</td>
<td>D6, 7 Final Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>D8,9 Comprehensive final</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objectives for CHEM 1312 (General Chemistry II)

This is a list of topics to be taught in General Chemistry II. It does not reflect the order in which the topics need be taught.

*** Optional

1 Chemical Kinetics
 - Rate of a reaction
 - Factors that affect reaction rates
 - Nature of reactants
 - Concentration of reactants: Rate-law expressions & Reaction order
 - Concentration vs. time: Integrated rate equations and half-life
 - Collision theory, activation energy
 - Transition state theory
 - Mechanisms and Rate-law expressions
 - Arrhenius equation: temperature and rate
 - Catalysts

2 Chemical Equilibria
 - Dynamic equilibria
 - Equilibrium constant Kc
 - Reaction quotients
 - Calculations with Kc
 - Heterogeneous equilibria
 - Kp and Kc
 - Le Chatelier's Principle: factors affecting equilibria

3 Acid-Base Theories
 - Arrhenius Acid-base theories
 - Bronsted-Lowry Acid-base theories
 - Strength of acids: binary and ternary acids
 - Lewis Acid-base theories

4 Acid-Base Equilibria
 - Ionization of water, K_w
 - pH and pOH
 - K_a and K_b for weak acids and bases, % ionization
 - Polyprotic acids
 - Hydrolysis of salts: Relationship between K_a and K_b
 - Hydrolysis of metal ions
 - Common ion effect and Buffer solutions, Henderson-Hasselbalch equation
 - Buffering action and preparation of buffer solutions
 - Acid-base indicators
 - Acid-base titrations

5 Ionic equilibria: Solubility
 - K_{sp} and solubility
 - Common ion effect of solubility Reaction quotients
 - Predicting precipitate formation
 - Fractional precipitation
 - Simultaneous Equilibria: K_{sp} with K_b or K_a
 - Dissolving precipitate, complex formation
6 Thermodynamic
 - The First Law of Thermodynamics
 - Enthalpy, ΔH
 - Calorimetry (constant-pressure and constant volume)
 - Thermochemical equations
 - Internal energy, ΔE
 - Relationship between ΔE and ΔH
 - Hess’ Law
 - Standard enthalpies of formation and reaction
 - Bond energy and ΔH
 - The Second Law of Thermodynamics & Spontaneity
 - Entropy and Third Laws of Thermodynamics
 - Gibb’s free energy
 - Relationship between ΔG and K

7 Electrochemistry
 - Balancing redox reactions
 - Electrical conduction & electrodes
 - Electrolysis
 - Faraday’s law of Electrolysis
 - Voltaic cells
 - Standard electrode potentials
 - Nernst equation
 - Concentration cells
 - Relationship of ΔG° and K

8 Coordination Compounds
 - Basics: ligands, coordination number
 - Nomenclature
 - Structural Isomers
 - Stereoisomers: geometric & optical isomers
 - Crystal field theory: high spin, low spin (Optional)
 - Color & spectrochemical series (Optional)

9 Nuclear Chemistry
 - n/p ratio and nuclear stability
 - Nuclear binding energy & nuclear stability
 - Radioactive decay
 - Nuclear equations
 - Kinetics
 - Nuclear fission, fusion and reactors

10 Introduction to Organic Chemistry
 - Types of hydrocarbons
 - Functional groups: halides, alcohols, ethers, aldehydes, ketones, amines, carboxylic acids & derivatives
 - Nomenclature
 - Typical reactions: substitution, addition, elimination & polymerization
 - Isomers