EXERCISE 4: MICROCOLLECTION AND HEMATOCRITS

Hematocrit Skills: 5 points
Capillary Puncture Skills: 26 points

Objectives:
1. List three types of patients who may be candidates for capillary puncture and state why microcollection would be the collection method of choice.
2. Identify two potential sites for capillary puncture.
3. List three areas to avoid for microcollection and the reason for each.
4. List and select the types of equipment needed to collect blood by microcollection.
5. List and describe two advantages for using an automated skin puncture device (lancet).
6. State the significance of a red ring and blue ring on microhematocrit tubes.
7. State the reason for warming the site before performing a skin puncture site.
8. Describe four acceptable methods for warming the skin puncture site and the maximum acceptable temperature of a warming device.
9. List the steps necessary to perform a capillary puncture in chronological order.
10. List five circumstances that would lead to recollection or rejection of a microcollection sample.
11. List ten special precautions necessary during microcollection.
12. State the order of the draw for microcollection tubes.
13. State the purpose for performing the microhematocrit test.
14. Given a diagram of a spun microhematocrit tube label the three layers and identify the formed elements present in each layer.
15. Describe the correct procedure and precautions for filling and sealing the microhematocrit tube.
16. Perform a microcollection of capillary blood from the fingertip.
17. Correctly perform and interpret the microhematocrit test with 90% accuracy.
18. State the normal values for a hematocrit.

Discussion

Skin Puncture Site

There are many terms used for "microcollection", such as capillary puncture, dermal puncture, micro sampling, finger puncture and heel puncture. Microcollection is a blood collection technique where a small puncture or cut is made through the skin and into the capillary bed. Drops of blood are collected from the puncture site for testing. For children over 1 year of age and adults, the distal portion of the third or fourth finger is the site of choice. For infants and babies up to 1 year of age who are not yet walking, the heel is the site of choice. Review Lab 3 for specific information on the selection of the appropriate site for collecting blood from an infant’s heel.

Avoid sites that are cyanotic (blue), swollen or inflamed. If the area is blue it indicates decreased blood flow to the site, usually because the area is cold. Either warm the site or select a site that is warm. Swollen or edematous areas should not be used because of possible contamination of the sample with tissue fluids which can contaminate the specimen. Inflamed or red areas may be an indication of an infection.
Patients Who are Candidates for Microcollection

Microcollection techniques may be the procedure of choice for the following patients:

1. **Neonates** - Newborns do not have a very large blood volume and it is very dangerous to remove too large a volume of blood, which would occur with a venipuncture. For this patient group, the blood is obtained from the sides of the heel. **The bottoms and backs of the heels are NEVER used for microcollection due to the possibility of causing damage to the bone or nerves with subsequent infection or permanent physical damage.** Infant’s fingers should never be punctured due to the short distance to the bones and main nerves of the infant's fingers. Refer to Exercise 3 for details of this procedure.

2. **Pediatric patients** - if only a small amount of blood is needed, the tip of the third or fourth finger is generally punctured. An example would be if only a CBC is ordered on a child, as this test can be performed on a small amount of blood. This is a less traumatic procedure than a venipuncture for a young child.

3. **Adults** - microcollection may be the procedure of choice in the following adult patients: severely burned, obese, patients with thrombotic tendencies, oncology patients, geriatric patients, patients with fragile or very poor veins, patients with I.V.s in both arms, and patients doing home testing such as glucose monitoring.

Microcollection Equipment

The types of supplies available for skin puncture vary but may include the following: gloves, warming pads, alcohol pads, lancets, gauze pads, glass microscope slides, micro collection tubes, capillary tubes with a capillary tube clay sealer, bandages, laboratory request slips or labels, a marking pen and a sharps container.

Sample Collection Tubes

The most common collection devices for capillary puncture include micro collection containers, microhematocrit tubes and capillary tubes. Microhematocrit tubes coated with heparin on the inside will have a red ring at the top; capillary tubes that are not coated with an additive will have a blue ring at the top. There should be a means for proper filling, measuring, color coding for the proper anticoagulant, stoppering, centrifugation and storage. Some devices are specific for point of care testing instruments.

Order of Draw for Microcollection

When collecting blood into microcollection containers, always collect samples for hematology test first. Samples for hematology may be collected in microhematocrit tubes or in lavender top microtainers. Since the body’s natural response to a puncture of the capillary bed is to start the hemostatic process and try to stop the loss of blood, you want to collect the samples for cell counts and other hematology test before the blood starts to clot. Once the hematology sample is collected, you should then collect tubes with any other anticoagulant additive, followed by tubes without anticoagulant additives.

In summary, the following is the order of the draw for microcollection samples:

1) Lavender (Or any other samples for hematology studies)
2) Other anticoagulant additives (green, gray)
3) Tubes without anticoagulant additives (red or gold)
Skin Puncture Devices

Lancets have a sharp metal point or blade and are designed for a controlled depth of puncture ranging from 1.8 to 3.0 mm. Babies should never be stuck with a puncture device that exceeds 2.0 mm. Lancets for capillary puncture are safety-engineered, single-use capillary blood sampling devices. The lancets currently used have a permanently retractable blade or needle feature that minimizes the possibility of injury or reuse. Lancets are available in a range of blade depth and needle gauges for sufficient blood volume in multiple sample requirements. Lancets are disposable and can be used only one time. If an unsuccessful puncture is performed, a new lancet must be used.

The lancets used in labs today are automated puncture devices. The advantage of using these devices is that they are spring loaded and are designed to give a quick, more uniform puncture of a specified depth. Another advantage is that the device hides the blade in a plastic holder, so the patient cannot see it. This prevents apprehensive patients, especially children, from pulling their hand away just as the phlebotomist is ready to perform the puncture and prevent the phlebotomist from possibly puncturing themselves. These skin puncture devices are available for punctures of different depths.

Devices on the market for diabetic at home glucose monitoring should not be used for microcollection. These devices provide a blood flow of one to two drops, adequate for the glucose test, but this is not adequate blood flow for the sample size needed for most laboratory tests.

Warming the Site

To ensure an adequate blood flow the site should feel warm to the touch. Cool skin indicates decreased blood flow to the area and the potential that, even though the puncture is performed properly, an adequate amount of blood will not be obtained. There are several methods available for warming the site and include the following:

1. Have the patient run warm tap water over their hands for two to three minutes.
2. Gently massage the area for 1 to 2 minutes. This helps to warm the hand and increase blood flow, which assists in obtaining a sufficient amount of blood from a single capillary puncture.
3. Obtain a wash cloth, wet it with warm water and wrap it around the site. The temperature of the wash cloth must not exceed 42° C (107.6° F). When wrapped around the site for 3 to 10 minutes the skin temperature can increase several degrees. This can be encased in a plastic bag to help retain heat.
4. Heel warmers are available commercially for use on neonates. It is a chemically activated source of heat and should not exceed 42° C (107.6° F). Temperatures above 42° C may burn the infant’s skin.

Labeling the Samples

Samples must be labeled immediately after collection while still by the patient. Computer generated adhesive labels can be wrapped around the sample. If these are not available put as much identifying information as possible on the micro-container then place the micro container into a red stoppered vacuum collection tube. Label the tube in the proper manner. Always follow the labeling protocol of the facility.
Precautions in Microcollection Techniques

1. Puncture laterally across the print. If the puncture is performed along the print the blood will flow with the print making it very difficult to collect, causing unnecessary contamination of your gloves and work area with blood.
2. The first drop of blood must be wiped off to prevent contamination of the specimen with tissue fluids. Tissue fluids contain coagulation factors that can accelerate coagulation (clumping of the blood) making it unacceptable for testing.
3. Collect hematology specimens first. When collecting blood for hematology tests the finger must be wiped dry after each test drawn. Platelets will begin to clump immediately in the blood at the puncture site. The values for the red blood cell count, hematocrit, hemoglobin and platelets are lower in capillary blood than in venous blood. Therefore, whenever possible and the patient is old enough, venipuncture should be performed.
4. Because of platelet adhesiveness and aggregation (clumping) at the site of the puncture, it is advisable to collect the platelet count and blood smear first if multiple tests are ordered.
5. If the tube contains an anticoagulant the tube must be firmly tapped on a hard surface after each drop collected to allow the blood to flow down the side of the tube and mix with the additive. Samples that are not well mixed will clot and will have to be recollected.
6. Capillary tubes with a blue ring do not have an anticoagulant and do not need to be mixed. Capillary tubes with a red ring contain the anticoagulant heparin, which prevents blood from clotting. The red ringed tubes must be tilted several times to allow the blood to mix with the heparin. If the blood does clot the specimen will have to be recollected.
7. Do not overfill a capillary tube. If the tube is completely full blood will leak out when the end is filled with clay and will contaminate your gloves or work area with blood. Capillary tubes should only be filled until they are 2/3 to ¾ full.
8. Be very careful when filling the end of the capillary tube with clay. Hold the capillary tube close to the end that will go into the clay. If the tube is held in the middle or far from the end being filled with clay it may break when pressure is applied. The broken end could pierce the skin and allow a large inoculum of blood into your bloodstream. This is more dangerous than a needle stick injury due to the amount of blood present in the capillary tube. If this type of injury occurs notify your instructor or, if you are at the clinical site, clinical instructor IMMEDIATELY.
9. If you have attempted the procedure twice and are not successful, do not puncture the person a third time, except in very unusual circumstances.
10. Always check the puncture site before leaving to make sure bleeding has stopped.
11. Never put an adhesive bandage on the puncture site of an infant or very small child, as this can present a choking hazard. Follow facility policy on post-puncture care.
Microhematocrit

The microhematocrit test is a screening test for anemia. It is quick, easy to perform and requires minimal equipment. After a skin puncture is performed the blood is collected in microhematocrit tubes and one end is sealed with clay. The tubes are then placed in a microhematocrit centrifuge which spins the tubes around at a great rate of speed.

This causes the blood to separate into three layers: plasma, buffy coat (which contains platelets and white blood cells), and red blood cells.

After spinning, the tube is placed on a device to “read” the hematocrit. The hematocrit is expressed as a percent (%) because it reflects the percentage of the sample that is red blood cells.

Reading of the Microhematocrit

Microhematocrit reader device:
1. Set the reader first with the clay-red cell interface at 0%.
2. Shift the ruled scale or etched line to 100% and align it with the plasma meniscus.
3. Read down to the percent spiral line that intersects with the RBC-WBC interface.
4. This percentage is the hematocrit value.

Microhematocrit reader card:
1. Place the centrifuged microhematocrit tube vertically on the chart with the bottom edge of the CRITOSEAL just touching the red line below the “0” percent line.
2. The bottom of the column of the blood should then be at the “0” percent line.
3. Slide the tube along the chart until the meniscus of the plasma intersects the “100” percent line.
4. The height of the packed red cell column is then read as a percent.

Precautions When Reading Results
1. The results of the two hematocrits should agree within 1 %.
2. Do NOT include the buffy coat layer when reading the results.
3. If the buffy coat layer exceeds 2%, it should be recorded and noted as volume of packed WBCs.
Normal Values

Different patient populations will have different normal value ranges.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td>45 - 50%</td>
</tr>
<tr>
<td>One year</td>
<td>27 - 44%</td>
</tr>
<tr>
<td>Women</td>
<td>36 - 48%</td>
</tr>
<tr>
<td>Men</td>
<td>40 - 55%</td>
</tr>
</tbody>
</table>

Lower than normal results can be due to a wide variety of causes including: poor diet, chemotherapy, drug therapy, gastrointestinal bleeding, or bleeding due to surgery or trauma.

Rejection of Microcollection Samples

The following may cause a sample to be unacceptable for laboratory testing. **If this occurs the sample must be recollected.**

1. If the first drop of blood is not wiped away sample will be contaminated with tissue fluid.
2. Excessive squeezing of the capillary puncture site to obtain the specimen will contaminate the specimen with excess tissue fluid.
3. Microcollection tubes with additives must be firmly tapped after each drop of blood. This allows proper mixing of the additive and sample during collection to prevent the specimen from clotting.
4. Alcohol must be completely dry prior to puncture as alcohol will cause hemolysis of the blood sample.
5. Certain tests **must** be free of air bubbles, which will cause falsely decreased results in the test.
6. Wrong tube collected.
7. Improperly labeled sample.
8. Anticoagulant additive tubes which have clots.
PROCEDURE for Capillary collection from a finger

Materials:
1. Lancet
2. Alcohol Pad
3. Gauze pads
4. Two microhematocrit tubes or microcollection container
5. Clay tube sealer (for use with microhematocrit tubes)
6. Gloves
7. Bandage
8. Sharps container and trash can

Instructions:
1. Introduce yourself as a student and state mission. Ask for verbal permission to proceed. (Observer records start time.)
2. Properly identify the patient. Ask the patient to state their name, spell it, and state their date of birth.
3. Ask about blood collection history. Explain procedure if necessary.
4. Performs proper hand hygiene.
5. Put on gloves.
6. Select appropriate site for skin puncture on finger. The third or fourth finger of the hand are acceptable. Consider which hand will be most comfortable for the patient as you turn and rotate the hand during the collection procedure. You may ask the patient if they have a hand they would prefer for you to use.
7. Gently massage chosen finger briefly from base to tip to aid blood flow.
8. If patient’s hand is cold, warm the site as necessary using accepted technique. The puncture site chosen should feel warm. If the site is cool, warm by gently massaging the finger, allowing the patient to run warm water over the site or wrapping the fingers in a warm cloth or hand warmer for several minutes.
9. Properly cleanses the site with alcohol; allows to dry. Rub the intended puncture site vigorously with an alcohol pad to cleanse the area and increase the circulation. Allow the skin to dry while preparing equipment. *Dry skin allows the blood to form a well-rounded drop*. Alcohol left on the site will contaminate the blood sample collected and cause hemolysis of the sample.
10. Selects and prepares appropriate equipment for the test ordered. Prepare the lancet according to manufacturer’s instructions. Verify that sample collection containers are available and ready for use.
11. Perform the puncture across the print of selected finger. The patient's hand and finger should be held *laterally* so that the puncture site is readily accessible. The skin near the chosen sites should be pulled taut. Hold the lancet firmly against the skin, *on the little finger side*, and activate it according to manufacturer’s instructions. **NOTE:** Failure to hold the lancet firmly against the skin may result in a shallow puncture which fails to bleed or does not provide an adequate amount of blood making it necessary to *repeat* the procedure. It is important to make the puncture across the print so blood will not flow with the print, but will instead make a well-rounded drop of blood.
12. **WIPE AWAY THE FIRST DROP OF BLOOD** unless otherwise indicated for the specific test being collected. Squeeze the finger firmly to initiate the blood flow. The first drop contains tissue fluid which will contaminate the blood sample collected.
13. Apply pressure appropriately by squeezing the finger firmly, releasing and repeat. Apply firm pressure approximately 1 cm behind the site of the puncture to obtain a drop of blood. Immediately release the pressure to allow recirculation of the blood. Continuously squeezing the finger without release will force tissue fluid into the sample, causing contamination. Rotate the finger so the puncture site is on the lowest point. Correct technique will cause the formation of a well-rounded drop of blood.

14. Collect blood into the appropriate collection device. DO NOT ALLOW THE COLLECTION DEVICE TO TOUCH THE PUNCTURE SITE.

15. Allows blood to flow into collection device - does not scrape the edge of the collection device on the skin or scoop the blood. Gravity will draw the blood to the lowest point on the patient’s finger, so rotate the patient’s hand so that the puncture site is at the lowest point.
For microhematocrit tubes: Hold the tube horizontally, NOT in a downward angle. Touch the tip to the drop of blood. Blood will flow by capillary action into the tube. **Avoid air bubbles.** The tube should be filled 2/3 to 3/4 full. **DO NOT OVERFILL.**
For micro collection tubes: Allow a large well-rounded drop of blood to form on the patient’s skin, and then let the blood drip or flow into the tube.

16. If the collection device has an additive, firmly taps the container on a hard surface after each drop to mix blood with additive. For microhematocrit tubes, the sample should be collected quickly, and the tube carefully tilted to mix the blood with the heparin to prevent clotting.

17. Collect a sufficient quantity of blood. For microhematocrit tubes, fill each tube 2/3 to ¾ full. For micro collection tubes, collect 4-6 drops of blood at a minimum. Cap micro collection tubes. When collecting microhematocrit tubes, you must fill ONE end of each tube with clay. Hold the clay vertically. Grasp the microhematocrit tube horizontally as close to the end that will be filled with clay as possible. Gently push the end into the clay 2 to 3 times. **Use great care, too much pressure will cause tube to break, which could puncture your skin, causing a blood exposure.**

18. After collection, applies pressure to the puncture site with gauze, has patient assist if possible.

19. Label each sample immediately after collection
20. Labels tubes correctly. Label from the stopper down with the following information:
 a. Patient’s name (last name first, first name second)
 b. ID number (and/or date of birth)
 c. Today’s date and time of collection (some labs require the use of military time)
 d. Your initials
 Ask patient to verify labeling. Instructor must also check labeling.

21. Inspects puncture site to make sure bleeding has stopped, applies bandage if necessary. If bleeding has not stopped, continue to apply pressure. Recheck site at one-minute intervals until bleeding has stopped.

22. Discard used materials in appropriate receptacle (sharps, biohazard or regular trash).

23. Thank patient. If outpatient, allow the patient to leave.

24. Disinfect work area.

25. Remove gloves; performs proper hand hygiene. (Observer records time.)

26. Skill performed within allotted time.
EXERCISE 4: MICROCOLLECTION - STUDY QUESTIONS

Name: ___________________________ Date: ____________________ Points: ________/42

1. List three types of patients who may be candidates for capillary puncture AND the reason they would be candidates for this procedure. (3 points)

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Reason for capillary puncture for this group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. List three areas to avoid for microcollection and the reason for each. (3 points)
 A.
 B.
 C.

3. List the 2 most commonly used sites for capillary puncture. (1 point)
 A.
 B.

4. List the correct order of the draw for Microcollection tubes. (1.5 points)
 A.
 B.
 C.

5. Explain why capillary puncture should not be performed on an infant’s finger. (1 point)

6. List and describe two advantages for using an automated skin puncture device (lancet). (2 points)
 A.
 B.
7. Why is important that the site selected for capillary puncture be warm? (1 point)

8. State the maximum temperature for a wet cloth or commercial warmer used for warming an infant’s heel and the reason why this is important. (2 points)
 A. Temperature:
 B. Reason:

9. List and describe four methods for warming the site prior to puncture. (2 points)
 A.
 B.
 C.
 D.

10. State why the site must NOT be punctured in such a way that the puncture is made along the lines of the print instead of laterally across the print. (1 point)

11. State why the first drop of blood produced must be wiped away. (1 point)

12. Discuss why the alcohol on the site must be completely dry prior to puncture. (1 point)

13. What additive is in the capillary tubes with a blue ring? A red ring? (1 point)

14. Why must collection tubes with additives be well mixed during sample collection? (1 point)
15. State why great care must be taken when filling the end of the microhematocrit tube with clay. (1 point)

16. State why it is important not to overfill the capillary tube. (1 point)

17. What is the maximum number of attempts which should be made using the capillary puncture technique to collect a blood specimen? (1 point)

18. Briefly list four precautions in microcollection techniques. (4 points)
 A.
 B.
 C.
 D.

19. State three circumstances that would lead to rejection of a patient microcollection sample. (3 points)
 A.
 B.
 C.

20. State the normal hematocrits values using the proper units for the following patients. (2 points)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Normal Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td></td>
</tr>
<tr>
<td>One year old</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td></td>
</tr>
</tbody>
</table>
21. What is the purpose for performing the microhematocrit test? (1 point)

22. Label the following diagram of a spun microhematocrit tube. (2.5 points)

 ![Diagram of a spun microhematocrit tube]

 Cell layers in centrifuged whole blood.

23. List the equipment used for a capillary puncture. (2 points)

24. **Briefly** list in chronological order the steps for performing a capillary puncture. (3 points)

 THIS SHOULD BE A SUMMARY OF THE PROCEDURE IN YOUR OWN WORDS.
Exercise 4: Microcollection and Microhematocrits

EXERCISE 4: MICROCOLLECTION – Microhematocrit Collection and Reporting of Results

Name _______________________________ Date _________________________ Points: ______/31

Lab Partner’s Name _______________________________

<table>
<thead>
<tr>
<th>Capillary Skills</th>
<th>Performed</th>
<th>Not Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduces self as student and states purpose. Record State Time Here</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Properly identifies patient.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Asks about blood drawing history and explains procedure if necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Performs proper hand hygiene.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Puts on gloves.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Selects appropriate site for skin puncture on finger.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Gently massage chosen finger briefly from base to tip to aid blood flow.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. If patient’s hand is cold, warms the site as necessary using accepted technique.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Properly cleanses the site with alcohol; allows alcohol to dry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Selects and prepares appropriate equipment for the tests ordered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Performs punctures across the print of selected finger. (Little finger side preferable)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Wipes away the first drop of blood unless otherwise indicated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Applies pressure appropriately by squeezing the finger firmly, releasing, and repeat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Collects blood into the appropriate collection device.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Allows blood to flow into collection device – does not scrape skin or scoop blood.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. If the collection device has an additive, firmly taps the container on a hard surface after each drop to mix blood with additive.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Collects a sufficient quantity of blood.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. After collection applies pressure to the puncture site with gauze, has patient assist if possible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Labels tubes immediately after collection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Labels tubes correctly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Inspects puncture site to make sure bleeding has stopped, applies bandage if necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Discards used materials in appropriate receptacle (sharps, biohazard or regular trash).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Thanks patient. If outpatient, allows patient to leave.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Disinfects work area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Removes gloves; performs proper hand hygiene. Record End Time Here</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Skill performed within allotted time. Record Total Time Here</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECORDING RESULTS

<table>
<thead>
<tr>
<th>Hematocrit Results</th>
<th>Tube 1</th>
<th>Tube 2</th>
<th>Results (use correct units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Name:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is this result within the normal range as listed in the Lab Discussion? (circle one)

YES NO

Grading Notes: Collection of the Micro hematocrit tubes is worth 26 points; Recording Results is worth 5 points.