Conservation of Energy Problems

Michael F. McGraw
Summer 2010
CHAPTER 6

Given:
\(D = 20.0 \text{ m} \)
\(m = 988 \text{ kg} \)
\(h = 40.0 \text{ m} \)

Questions:
(a) What is \(v \) at top of loop?
(b) Force exerted on car by track at top of loop?
(c) Min height \(h \) to make it over the top?

No friction
No air resistance

(a) \(v \) at bottom of incline is \(v_f \)

\[mg \Delta h = \frac{1}{2} m v_f^2 \Rightarrow v_f^2 = 2gh \]

At top
\[\frac{1}{2} m v^2 = mgD + \frac{1}{2} m v_f^2 \]

Multiply by \(\frac{2}{m} \)
\[2v^2 = 2gD + v_f^2 \]

\[v^2 = v_f^2 - 2gD = 2gh - 2gD = 2g(h-D) \]

\[v = \sqrt{2(9.8)(40-20)} = 19.8 \text{ m/s} \]

(b)
\[\Sigma F = -N - mg = -mv^2 \]

\[N = \frac{mv^2}{R} - mg = \frac{m}{\frac{d}{\Delta h}} \cdot 2g(h-D) - mg = \left[\left(\frac{4(h-D)}{D} \right) - 1 \right] mg \]

\[N = \left[\frac{4h - 4D - D}{D} \right] mg = \left[\frac{4h - 5D}{D} \right] mg = \left[4 \frac{h}{D} - 5 \right] mg \]

\[N = \left[4 \left(\frac{40}{20} \right) - 5 \right] mg = 3mg = 3(988)(9.8) = 29.0 \text{ kN} \]

(c) Min height \(h \) \(\Rightarrow N = 0 \)

\[\frac{4h}{D} - 5 = 0 \]

\[\frac{4h}{D} = 5 \]

\[h = \frac{5D}{4} = \frac{5(20)}{4} = 25 \text{ m} \]
CLEARER APPROACH

STAY AT v^2 LEVEL

Bottom

$v_f^2 = 2gh$

Top

\[
\frac{mv^2}{R} - mg = 0
\]

$v_{mn}^2 = gR$

Min at Top

\[
v_f^2 = 2gD + v_T^2
\]

$2gh = 2gD + gR$

$2gh = 4gR + gR = 5gR$

$h = \frac{5}{2}R$
What is the total energy of the spring-mass system?

$x = 0$

$E_T = \frac{1}{2} k x^2$

After release:

$E_T = \frac{1}{2} k \Delta x^2 = \frac{1}{2} m v^2 + \frac{1}{2} m g h$

$\Delta x = 0$

$\frac{1}{2} m g h = \frac{1}{2} m v^2$

$\Delta x = \Delta h$

$\frac{1}{2} m g h = \frac{1}{2} m v^2 + \frac{1}{2} m g h$

$\Rightarrow \frac{1}{2} m v^2 = 0$
Question: What is the tension in the string at position B?

The mass is traveling in an arc → centripetal motion

\[\Sigma F = T - mg = m a_c = \frac{m v^2}{l} \]

\[T = mg + \frac{m v^2}{l} \]

From conservation of total mechanical energy

\[P_{E_{max \ at \ top}} = KE_{max \ at \ bottom} \]

\[mg \ell = \frac{1}{2} m v^2 \]

\[\sqrt{2 g \ell} = v \]
Frictionless

Question: Find compression of spring with accel of mass is zero.

Force on m is \(mg \sin \theta \)

Accel = 0 when spring force equals \(mg \sin \theta \)

\[
SE = kx - mg \sin \theta = 0
\]

\[
x = \frac{mg \sin \theta}{k}
\]

\[
k = \frac{mg \sin \theta}{\Delta x}
\]
CHAPTER 7

E 2. 0.20

A B C D E F K

GIVEN:

\(M = 5.0 \text{ kg} \)
\(v_0 = 20 \text{ m/s} \)
\(\mu_k = 0.40 \)
\(\Delta x = 2 \text{ m} \) (SPRING COMPRESSION)

\\(h = 15 \text{ m} \)

\(\Delta x = 2 \text{ m} \) (SPRING COMPRESSION)

THREE INTERACTIONS: GRAVITY, FRICTION + SPRING.
ALL ARE CONSERVATIVE EXCEPT FRICTION

INITIALLY \(E_T = \frac{1}{2}mv_0^2 \) — REGION A — TOTAL ENERGY FOR PROBLEM

REGION B

\(E_T = \frac{1}{2}mv_0^2 = \frac{1}{2}mv_0^2 + mg \gamma Y; \quad \text{osy} \leq \gamma \)

REGION C

\(E_T = \frac{1}{2}mv_0^2 = \frac{1}{2}mv_0^2 + mgh \)

REGION D

\(E_T = \frac{1}{2}mv_0^2 = \frac{1}{2}mv_0^2 + mgh + fx \); \quad f = \mu_k \gamma = \mu_k mg \)

REGION E

\(E_T = \frac{1}{2}mv_0^2 = \frac{1}{2}mv_0^2 + mgh + fd \)

REGION F (AT FULL COMPRESSION \(V_F = 0 \))

\(E_T = \frac{1}{2}mv_0^2 = \frac{1}{2}mv_F^2 + mgh + fd + \Delta x \)
CHAPTER 7
514 P. 20

Given:
\[m = 5 \text{ kg} \]
\[h_0 = 10 \text{ m} \]
\[k = 200 \text{ N/m} \]
\[\Delta x = 1.5 \text{ m} \]

Guess: Find \(\Delta E \) lost to sound, thermal, etc.

\[E_T = mg \frac{h_0}{2} \]

Final:
\[E_T = mg \frac{h_0}{2} = KE + 6PE + \text{Spring PE} + \Delta E \]
\[v = 0 \quad \text{so} \quad KE = \frac{1}{2} m v^2 = 0 \]
\[E_T = mg \frac{h_0}{2} = 0 + mg (5-\Delta x) + \frac{1}{2} k \Delta x^2 + \Delta E \]
\[5(9.8)(10) = 5(9.8)(5-1.5) + \frac{1}{2}(200)(1.5)^2 + \Delta E \]
\[490 \text{ J} = 171.5 \text{ J} + 225 \text{ J} + \Delta E \]
\[\Delta E = 490 - 397 \]
\[\Delta E = 93 \text{ J} \]