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Topic Y2.  Approximate Numbers, Part VIII. 

Computing with Multiple Input Values –  Empirical Method

Objectives:
1. Use repeated sets of related measurements taken under the same conditions to find the standard deviation of the output of any formula that uses the measurements as input values.

2. Learn that adding two independent measurements increases noise by significantly less than the sum of the noise in the two measurements, due to partial cancellation of noise.

3. Learn that subtracting two independent measurements results in the same noise that adding them does, which means that the relative noise for the difference can increase substantially.
4. Learn that when two measurements share a common source of background noise, it is possible that the difference between them can have much lower noise than either measurement considered alone, because the noise values are correlated and thus cancel each other when subtracted.

Section 1 – Finding The Amount of Noise in Combined Measurements

As discussed in earlier lessons, the noise in measurement processes makes measurements values approximate numbers.  This means the results of calculations done with measurements are also approximate; if there is noise in the inputs, there will be noise in the result — a phenomenon called noise propagation.  Depending on the kind of calculation, the resulting noise may be larger or smaller than the noise of the inputs.

There are both two main methods for predicting the noise.  This lesson will focus on use of multiple measurements to determine nose propagation empirically (that is, from experience).  That approach has the advantage of working for all possible types of calculations, and for both correlated and uncorrelated noise.  A later lesson will discuss how to predict noise propagation mathematically, which may be more convenient to use in certain particular kinds of calculations.

Here is an outline of the procedure used in empirical noise-propagation analysis:


[1] Acquire multiple independent sets of all measurements to be used in the calculation.


[2] Put these test measurements into a spreadsheet (in adjacent columns, a row for each set).


[3] Enter a formula with the desired calculation into another column, thereby producing a calculated result for each set of test measurements, in the same row as the measurements.


[4] Use the STDEV function to find the noise in both the inputs and the results
Section 2 – Noise Propagation For Addition of Two Measurements

The direction of the random errors that constitute noise is unpredictable: each measurement is just as likely to be above the average as below it.  If two measurements from the same process are added, the error compared to the true value might double (if the errors happen to be equal and in the same direction) or completely cancel out (if they are equal and in oppo​site directions).  Usually what results is a partial cancellation, so that the noise of the sum of two independent measurements is more than the noise in either measurement but is less than the sum of the two noise values.

Example 1: Similar noise levels

 A backpack and a suitcase are weighed separately in ten independent sets of test measurements, giving the data shown below right.  Make a measurement statement about the sum of the weights of the pair of objects, stating the expected noise.

Solution to Example 1: 

Put the data into a spreadsheet.  Since there are two measure​ments in each set, put the backpack weights into column A and the suitcase weights into column B.

Since the result wanted is the total weight, “=A2+B2” is the formula for the calculation that should be put into cell C2 and then spread down to C11.

Put the formulas “=AVERAGE(A2:A11)” and “=STDEV(A2:A11)” functions on lines 14 and 17, then spread them all the way across to column C.

The results, rounded so that the standard deviations are expressed with two significant digits, show that: A backpack weighed at 32.34 ( 0.47 pounds and a suitcase weighed at 46.88 ( 0.45 pounds yield a summed weight of 79.23 ( 0.66 pounds. 
Note that on the average the noise for the total weight is substan​tially less than the sum of the noises for the two individually-weighed pieces.  This is due to the typical partial cancellation of the noise in those two measurements.  When the noise is about the same, as it is here, cancellation of about 30% of the noise is the most common result.  But individual cases may differ (that’s what “random noise” means) – note that in row 2 the noise almost cancels out, while in row 8 both values are significantly above average and in row 3 they are both well below average.
Example 2: Substantially-different noise levels

An unloaded truck is weighed by one process, and the load for the truck is weighed by a more accurate process.  In order to analyze noise propagation in this situation, 16 sets of measure​ments were taken.  These are shown in bold in the solution table to the right.  Based on this data, state the expected weight of the loaded truck, with an appropriate statement of expected noise.

Solution:  Since this problem also uses sets of two measurements, the process of solving it is very similar to Example 1.  The main difference is that since there are 16 sets of measure​ments rather than 10, the row numbers used for references below row 2 have to be increased by 6 (e.g., the averages are on row 20 rather than row 14).

The results, with appropriate rounding, show that when a truck weighing 3,824.6 ( 6.4 pounds carries a load of 159.6 ( 1.1 pounds, the total estimated weight is 3,984.2 ( 6.5 pounds.

Notice that almost all the noise in the sum comes from the more noisy measurement process.  (The “Both” noise is less than 2% larger than the “Truck” noise.)  This is typical, which is why it is most important to identify large noise sources.

Section 3 – What Noise Is Expected If Measurements Are Subtracted?
Because the noise in each independent measurement that is being subtracted is just as likely to be negative as positive, the noise-cancellation effects when two measurements are subtracted are exactly the same as when they are added (if you have a random pile of coins, turning them all over will leave you with about the same number of heads and tails as before – about 50%).  This means that the expected noise of the difference of two measurements is somewhat more than the noise of either measurement, but less than the sum of the two noise values, just as for addition.  

Example 3: Comparing the effects on noise of addition and subtraction


Extend the spreadsheet used in Example 1 (weighing the backpack and suitcase) to use this same data to estimate the difference in weight between these two pieces of luggage.

Solution:


1. We will use column D for the differences.  Put the label “Differences” into D1.


2. Put the formula “=B2-A2” into cell D2.  This will compute the difference for this row.


3. Spread the formula in D2 down to D11.  Now each row will show its difference value.


4. Select C14 (the average), and extend its formula over one cell to D14.


5. Select C17 (the standard deviation), and extend its formula over one cell to D17.


6. Now column D has exactly the same format as column C.  The average difference is 14.5431 pounds, and the standard deviation of the difference is 0.636151 pounds.  The standard deviation should be rounded off to two decimal places: ±0.64 pounds.
Compare the standard deviation value for the difference (0.64 pounds) with that of the sum (0.66 pounds).  While they are not exactly the same, they are very close to each other.  The difference is just due to random variation in the noise – the expected average over many different measurement sets would be the same for both addition and subtraction. 

Since a difference may be much smaller than the measurements from which it was formed, it often happens that the relative noise of a difference (the standard deviation divided by the difference) is large enough to be a problem even though the noise did not seem significant relative to the original measurements.  
Example 4: Compare the relative noise of the difference from Example 3 to that of the sum of the same measurement in Example 1.

Solution to Example 4:

The noise is similar in both cases, but the average sum of 79.2259 pounds is of course larger than the average difference of 14.5431 pounds.  This leads to these relative-noise values:

Relative noise in estimate of sum  =  0.663863 ÷ 79.2259  =  0.00837937  ≈  ±0.84%

Relative noise in estimate of difference  =  0.636151 ÷ 14.5431  =  0.0437425  ≈  ±4.4%

In this case, the relative noise in the difference of the two measurements is more than 5 times as large as the relative noise in their sum.  If the backpack and briefcase had been almost the same weight, the noise might be larger than the difference, making it difficult to estimate which is heavier using this scale.
Section 4 – What About Other Combinations of Measurements?
The same basic idea of partial cancellation will apply to any set of measurements, but the net effect may depend both on the relative size of the values and on how they are combined.  But while these relationships would complicate an algebraic analysis, the empirical method used here to determine the noise in the result will work for any method of combining measured values.  Just take multiple sets of measurements, form a column showing the result of the combination, then take the standard deviation of those results.
Example 5: Propagation of noise when through a function of several measurements:

The height HF  of a flagpole near a retaining wall is estimated by measuring:

[a] the length LF of the shadow of the flagpole, 
[b] the height HW of the retaining wall, and 
[c] the length LW of the shadow of the retaining wall,
 then using proportions for similar triangles to compute HF.  
The appropriate formula for the computation is 
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Find the noise in the height estimate if it is computed with this formula using the ten independent sets of LF, HW, and LW measurements shown to the right.

Solution to Example 5:


1. Use columns A, B, and C for the respective input measurements LF, HW, and LW.  Appropriately label A1, B1, and C1, then put the data values into rows 2 to 11.

2. Use column D for the flagpole height computed from the input measurements. 


3. Put the formula “=A2*B2/C2” into cell D2.  This will compute the height implied by the measurement set in this row.


4. Spread the formula in D2 down to D11.  Now each row will show its height estimate.

5. Put the formula “=STDEV()” into A13, then spread it over to D13.  The 1.874452 value in D13 is the requested standard deviation of the computed height estimate.  It should be rounded to ±1.9 feet (two significant digits) for reporting purposes.

Note that the input standard deviations (±0.10 feet, ±0.061 feet, and ±0.048 feet) are all much smaller than the standard deviation of the result.  This is mainly because for this caase the proportional method of calculation magnifies any errors in the wall-related measurements by the ratio of the flagpole’s shadow length to the wall’s shadow length, which is about 16.
Section 5 – What If The Measurements Are Not Independent?

Most simple mathematical rules for predicting propagation of noise assume that the noise in each measurement is unrelated to the noise in the other measurements – this is called independence in statistical analysis.  It is because of the independence of measurements that partial cancellation of noise is expected to occur in most situations.  If measurements are not independent, they are said to be correlated.  The noise correlations may be “positive” correlation, which means that the noise in each pair of measurements is usually in the same direction (and thus cancels less), or “negative”correlation, meaning that the noise is usually in opposite directions (and thus cancels more).
Correlation is measured by a correlation coefficient that can be computed from the measurements (in Excel, this is done with the CORREL function).  The typical correlation between the noise in independent measurements is zero, but in correlated measurements it can range from +1 (if the noise in the two measurements always matches in direction and size) to –1 (if the noise in the two measurements always matches in size but is opposite in direction).  

The empirical method described in this lesson gives correct results regardless of whether measurements are independent or correlated.  All that is required is that the data taken be representative of the measurement process and situation about which a noise description is desired.  In fact, this empirical method can be used to find out whether measurements are correlated, by comparing the actual results with the mathematical predictions for independent measurements, or by using the CORREL function directly.

Correlation due to simultaneous background noise


One common situation is that two measurements taken at the same time both include some noise that comes from the environment in which the measurements are taken and affects them both in the same way.  In such as case, the difference between the two measure​ments may be much less noisy than either measurement considered alone, since when the difference is computed the background noise present in the first measurement is cancelled by the same noise in the second measurement.  (This correlated-noise situation is different from the independent-measurement case, in which the noise in the difference is usually larger than that in either of the measurements.)
Example 6: The 16 measurement sets below show the voltage measured simultaneously on each side of a component in an electrical circuit that also has a large amount of background noise.  The information wanted is the voltage drop across the component (that is, the true difference between the higher and lower voltages).  What does this data imply about the independence of the higher and lower voltages in each measurement set?
Solution to Example 6:
First we should determine the noise in each of the inputs, and also the noise in their difference.  
[1] Copy the two columns of data into a spreadsheet

[2] Use a column to the right to compute the difference between each pair of measurements.  
[3] For each column, enter a formula with the STDEV function applied to the data in that column.  
You should get standard deviations of about ±0.75 volts for the measured voltages, but a much lower standard deviation of about ±0.25  for the voltage drop.  
Since the noise for the difference of two independent measurements will, on the average, be more than the noise for either of them, the fact that the noise of the difference in measurements is so low is an indication that the noise in the two measurements in each set is highly correlated.  
[The physical reason for this correlation is that the same background noise is included in both measurements made at the same time.]
Alternate solution to Example 6:

Rather than comparing the standard deviation of the difference to that expected from independent variables, you can use Excel to directly compute the correlation coefficient.  After copying the data into a spreadsheet, put a formula such as “=CORREL(A2:A17,B2:B17)” into an empty cell.  The resulting value is 0.942102, or about +94%.  This value shows that there is a strong positive correlation between the noise values in each pair of measurement values.
Noise correlation due to overlapping averages

It is often the case that when a sequence of measurements is taken, each measurement is influenced by those before it, because the measurement device does not completely reset before the next measurement is taken, or because the same noise condition persists during both measurements.  Sometimes this influence from neighboring measurements is deliberate, since such “smoothing” is a kind of averaging that reduces the noise in the measurements.  The same effect can be produced even when the initial measurements are independent by use of a moving average (also sometimes called a “rolling average” or a “running average”) in which each measurement is replaced by an average over a fixed time interval ending at that measurement.

For example, an air-pressure sensor might report every second by displaying the average of its measurements over the previous 10 seconds.  Successive overlapping averages of this kind clearly are not independent, since 9 of the 10 measurements used for a report were also used in the previous report, so a strong positive correlation can be expected between their noise values.

To detect correlation between adjacent measurements in a series, use the CORREL function with both arrays pointing at the same data series, but offset by one.  For example, if the data is located in A1:A20, then evaluate the formula “=CORREL(A1:A19,A2:A20)”.  For independent measurements, this will be reasonably close to zero.  Such autocorrelation tests can also be applied to measurements separated by greater time intervals, which is sometimes useful to detect noise effects that repeat at regular intervals.
Example 7:  The series of temperature measurements shown to the right were reported at 15-second intervals by a kiln thermometer.  Does the noise pattern of these measurements imply that they are independent?
Solution for Example 7:

[1] Place the data into a spreadsheet in column A so that the numbers start at A2 and end at A23.

[2] Put the formula “=CORREL(A2:A22,A3:A23)” into any empty cell, displaying the value 0.844875 for the correlation of successive measurements..
The high 84% correlation implies that these measurements are not independent, but instead reflect a running average.

Example 8: The series of ultrasonic thickness measurements shown above to the far right were reported at 5-second intervals from a gauge on a factory production line.  Does the noise pattern imply that the measurements are independent?
Solution for Example 8:  
Using the same method as in Example 7 (adjusted for having one fewer measurement value) gives a correlation value of  –0.05226.  This close-to-zero value implies that these measurements are independent of each other. 

If the trendline of a measurement series is anything other than a horizontal line, the trendline formula should be subtracted from the data prior to using CORREL (or STDEV), since it is the nature of the residual noise that is of interest in analyzing noise propagation, not the correlation between the variables themselves.  A horizontal-line constant background does not have to be subtracted, because CORREL and STDEV automatically subtract off the average as part of their computation process.

Exercises
Part I.  Re-work Examples 1 – 8 from the discussion pages.  Use the associated datasets in those pages.
1.  A backpack and a suitcase are weighed separately in ten independent set of test measurements, giving the data shown in Example 1.  Make a measurement statement about the sum of the weights of the pair of objects, stating the expected noise.

2.  An unloaded truck is weighed by one process, and the load for the truck is weighed by a more accurate process.  In order to analyze noise propagation in this situation, 16 sets of measure​ments were taken.  These are shown in bold in the solution table for Example 2.  Based on this data, state the expected weight of the loaded truck, with an appropriate statement of expected noise.

3.  Extend the spreadsheet used in Example 1 (weighing the backpack and suitcase) to use this same data to estimate the difference in weight between these two pieces of luggage.
4.  Compare the relative noise of the difference from Example 3 to that of the sum of the same measurement in Example 1.
5.  The height HF of a flagpole near a retaining wall is estimated by measuring: [a] the length LF of the shadow of the flagpole, [b] the height HW of the retaining wall, and [c] the length LW of the shadow of the retaining wall, then using proportions for similar triangles to compute HF.  Find the noise in the height estimate if it is computed with the formula shown in Example 5 and the ten independent sets of LF, HW, and LW measurements shown there.
6.  The 16 measurement sets in Example 6 show the voltage measured simultaneously on each side of a component in an electrical circuit that also has a large amount of background noise.  The information wanted is the voltage drop across the component (that is, the true difference between the higher and lower voltages).  What does this data imply about the independence of the higher and lower voltages in each measurement set?

7.  The series of temperature measurements shown in Example 7 were reported at 15-second intervals by a kiln thermometer.  Does the noise pattern of these measurements imply that they are independent?

8.  The series of ultrasonic thickness measurements shown for Example 8 were reported at 5-second intervals from a gauge on a factory production line.  Does the noise pattern imply that the measurements are independent?


Part II.  

[9] Two packages are weighed several times, with the results shown in the data to the right.  State standard deviations for: 


[a] the first package

[b] the second package


[c] the sum of each pair of measurements


[d] the difference of each pair of measurements

[10] The weight of a chemical sample is estimated by weighing its container before and after the sample is taken from it, with the results shown to the far right.  State the average and standard deviation for the estimated sample weight.
[11] Calculate the relative noise for the weight estimate in the problem above.
[12] The length of the diagonal across a rectangular plaza is estimated by repeatedly measuring the lengths of the two sides and applying the Pythagorean Theorem.  Determine the standard deviation of this process from the data shown to the right.


[13] The area of a rectangular room is estimated by measuring its width and length.  The table to the right shows ten separate sets of such measurements, made by different people.  Use this data to:
[a] Compute the average and standard deviation of the estimated area.

[b] Determine if these height and width measurements are correlated with each other.

[14] A firm uses its driver logs to check the variation in distance traveled between its factory in Dallas and two warehouses in Waco and Austin.  The mileage and time are automatically recorded on departure and arrival for each leg of the trip.  The data to the right shows one month’s trips.


[a] Compute the relative variation in time for each leg. 


[b] Compute the correlation in time variation between the two legs.  Is the correlation positive, negative, or near zero?


[c] Suggest a reason that time values might be correlated in the way indicated by this data.

[15] Using the driver-log data for the situation described above:

[a] Compute the relative variation in mileage for each leg. 


[b] Compute the correlation in mileage variation between the two legs.  Is it positive, negative, or near zero?


[c] Suggest two reasons mileage values might be correlated in the way indicated by this data.  

[d] Suggest how you might test which of the reasons given in your answer to part [c] is more likely to be correct.

. 
[16] The series of measurements shown to the right were reported at one-minute intervals by an ozone-concentration monitor.

[a] Show whether or not this data implies that the successive measurements are independent.
[b] Does the data show significant correlation between measurements that are 5 minutes apart?

Example 1 solution spreadsheet


�
A�
B�
C�
�
1�
Backpack�
Suitcase�
Sum�
�
2�
32.833�
46.418�
79.251�
�
3�
31.945�
46.234�
78.179�
�
4�
31.982�
46.350�
78.332�
�
5�
31.916�
46.919�
78.835�
�
6�
32.375�
47.325�
79.700�
�
7�
32.321�
47.170�
79.491�
�
8�
32.959�
47.380�
80.339�
�
9�
32.932�
46.542�
79.474�
�
10�
32.511�
47.206�
79.717�
�
11�
31.640�
47.301�
78.941�
�
12�
�
�
�
�
13�
Average Values�
�
14�
32.3414�
46.8845�
79.2259�
�
15�
�
�
�
�
16�
Standard Deviations�
�
17�
0.466839�
0.452507�
0.663863�
�









(For problem 12)�
�
South side


(feet)�
East side


(grams)�
�
217.24�
109.91�
�
219.45�
108.36�
�
217.02�
109.26�
�
217.25�
109.49�
�
217.97�
109.06�
�
218.41�
108.41�
�
218.43�
109.75�
�
216.88�
107.76�
�
219.82�
108.96�
�
218.06�
106.28�
�






diagonal





sides





(For problem 10)�
�
Before


(grams)�
After


(grams)�
�
844.57�
823.40�
�
849.36�
824.70�
�
846.58�
822.87�
�
842.43�
827.19�
�
841.61�
825.64�
�
844.18�
822.94�
�
845.57�
822.43�
�
845.18�
822.72�
�
842.36�
819.58�
�
844.40�
819.11�
�
846.05�
823.54�
�
842.06�
823.38�
�









(For problem 9)�
�
First


Package


(pounds)�
Second�package


(pounds)�
�
7.45�
6.18�
�
7.87�
6.04�
�
7.58�
5.91�
�
8.20�
5.83�
�
7.77�
6.18�
�
8.12�
6.03�
�
8.11�
5.68�
�
7.45�
5.66�
�
7.86�
6.62�
�
7.86�
5.63�
�






Data for Example 1�
�
Backpack�(pounds)�
Suitcase


(pounds)�
�
32.833�
46.418�
�
31.945�
46.234�
�
31.982�
46.350�
�
31.916�
46.919�
�
32.375�
47.325�
�
32.321�
47.170�
�
32.959�
47.380�
�
32.932�
46.542�
�
32.511�
47.206�
�
31.640�
47.301�
�






Data for problem 16�
�
Ozone (parts per billion)�
�
83.80�
�
83.83�
�
83.27�
�
84.06�
�
84.04�
�
83.43�
�
83.80�
�
82.97�
�
83.16�
�
83.24�
�
83.27�
�
83.57�
�
84.53�
�
84.52�
�
84.88�
�
85.29�
�






Problem 13 data (feet)�
�
Height�
Width�
�
22.25�
17.27�
�
21.75�
17.70�
�
21.37�
16.88�
�
21.75�
16.92�
�
22.07�
17.18�
�
20.71�
15.91�
�
21.04�
16.38�
�
20.99�
16.50�
�
22.55�
17.50�
�
20.56�
15.72�
�






Data for problems 14& 15�
�
Dallas-Waco�
�
Waco-Austin�
�
Miles�
Minutes�
�
Miles�
Minutes�
�
93.0�
121.0�
�
107.1�
142.3�
�
91.4�
117.7�
�
105.9�
142.3�
�
94.6�
121.7�
�
109.2�
139.6�
�
90.0�
118.7�
�
105.8�
141.2�
�
93.1�
120.9�
�
107.4�
138.1�
�
92.1�
120.4�
�
107.2�
141.9�
�
93.7�
117.0�
�
108.4�
143.0�
�
91.4�
115.5�
�
106.4�
147.3�
�
96.3�
115.4�
�
110.7�
146.6�
�
90.9�
114.4�
�
106.2�
143.2�
�
94.9�
116.6�
�
109.3�
146.8�
�
90.2�
116.4�
�
104.6�
143.2�
�
95.8�
118.2�
�
111.1�
146.0�
�
94.2�
116.2�
�
109.7�
147.3�
�
93.2�
118.9�
�
108.0�
141.9�
�
96.5�
119.8�
�
111.1�
144.2�
�
93.4�
121.2�
�
108.0�
140.8�
�
94.6�
120.3�
�
108.9�
142.0�
�
94.0�
118.5�
�
108.4�
145.2�
�






Example 8�
�
 Thickness (inches)�
�
1.282�
�
1.233�
�
1.408�
�
1.302�
�
1.282�
�
1.379�
�
1.391�
�
1.314�
�
1.298�
�
1.324�
�
1.369�
�
1.348�
�
1.223�
�
1.252�
�
1.297�
�
1.253�
�
1.374�
�
1.396�
�
1.301�
�
1.220�
�
1.402�
�






Example 7�
�
Temp (°F)�
�
2047.3�
�
2046.3�
�
2044.9�
�
2043.5�
�
2042.7�
�
2043.6�
�
2041.5�
�
2036.7�
�
2040.7�
�
2044.2�
�
2047.6�
�
2050.7�
�
2053.5�
�
2052.5�
�
2052.8�
�
2053.0�
�
2052.8�
�
2049.8�
�
2050.0�
�
2044.6�
�
2041.7�
�
2044.5�
�






Higher


voltage�
Lower


voltage�
�
7.545�
6.902�
�
7.38�
6.916�
�
6.406�
6.25�
�
5.474�
5.198�
�
5.678�
4.982�
�
6.059�
5.822�
�
6.888�
6.420�
�
7.257�
6.658�
�
7.103�
6.192�
�
5.755�
5.244�
�
5.432�
4.623�
�
6.159�
5.087�
�
6.870�
6.375�
�
7.313�
6.811�
�
7.360�
6.495�
�
6.106�
5.728�
�






Data for Example 5 (feet)�
�
Flagpole shadow�
Wall


height�
Wall 


shadow�
�
52.40�
5.97�
3.29�
�
52.47�
6.08�
3.32�
�
52.62�
5.98�
3.34�
�
52.43�
6.00�
3.23�
�
52.47�
6.04�
3.26�
�
52.66�
6.15�
3.24�
�
52.48�
6.09�
3.37�
�
52.46�
6.02�
3.25�
�
52.69�
6.12�
3.26�
�
52.46�
6.08�
3.24�
�






Solution spreadsheet for Example 2


�
A�
B�
C�
�
1�
Truck�
Load�
Both�
�
2�
3823.2�
160.3�
3983.5�
�
3�
3811.5�
159.4�
3970.9�
�
4�
3825.6�
157.7�
3983.3�
�
5�
3831.2�
160.0�
3991.2�
�
6�
3822.9�
158.8�
3981.7�
�
7�
3826.5�
160.8�
3987.3�
�
8�
3819.4�
158.9�
3978.3�
�
9�
3828.9�
159.4�
3988.3�
�
10�
3820.4�
160.4�
3980.8�
�
11�
3828.0�
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