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Modeling, Part III.  Automated Fitting of Models, Comparative Goodness of Fit, and Outliers
Objectives:

1. Be able to adapt a modeling worksheet to compute a goodness-of-fit indicator from the deviation values between the data and the model.
2. Be able to use the Solver add-in with to automatically find the model parameters which minimize the indicator, and thus fit the data as well as possible as measured by that indicator.

3. Derive the standard deviation around the model from the sum of squared deviations, the number of deviation used in the sum, and the number of parameters in the model.

4. Be able to use alternative goodness-of-fit measures such as maximum deviation.

5. Select between different kinds of model by comparing best-fit standard deviations.

6. Be able to use relative deviation to compute an alternative form of standard deviation

7. Be able to identify data points that are outliers to the model implied by most of the data points, and to remove identified outliers from the model-fitting process when appropriate.

8. Be able to make and use a modeling spreadsheet to fit any specified function to a dataset.
Overview – getting the computer to do the tedious part so that models can be applied more easily

Splitting the work of modeling.  The modeling process has two parts, one requiring thought and the other just requiring patience.  The thoughtful part is deciding what model makes sense to use, looking at the graphs to see if a better model is needed of if some data points should be handled specially, and interpreting what the final parameter values imply about the situation in which the data was taken.  The second part of fitting is the tedious process of adjusting each parameter in turn until you find the best parameter values for the chosen kind of model.

Tedious tasks are what computers do best.  In this topic you will learn to use Solver tool that can makes the computer quickly find the best-fit parameter values for a model.  Choosing which kind of model to fit is still your job, but automation will give you more time to do it.  Using an automated fitting process will also make it easier to use models that have more parameters, permitting models that are more realistic and can solve a wider range of problems.

What is the “best” fit?  So far, we have relied on a person looking at the graph to decide when the parameter settings for a model gave a good fit.  People are good at this kind of visual assessment, but computers are not — they are much better at dealing with numbers.  So to automate the fitting task we will compute a number that measures how well a particular model fits the data we are working with.

Handling stray data points.  It sometimes happens that a small subset of the points in a data set deviate substantially from the overall pattern.  These “outlier” points sometimes convey important information, but other times simply reflect bad measurements.  In either case, it is usually best to exclude them from the model-fitting process and report them separately.  We will discuss how to do this without losing the efficiency of the automated-fitting approach.

Additional types of models.  The model-fitting process that we have already applied to linear, quadratic, and exponential formulas can be used with any type of modeling formula.  All that is needed for a new type of model formula is to enter the in C3 in spreadsheet format, with the parts that you wish to fit as parameters expressed as absolute references to column G cells.  In this topic we will see how to quickly adapt a modeling spreadsheet to fit many different formulas or to provide model enhancements such as a non-zero baseline for an exponential model.  In later topics we will extend our list of basic model formulas and discuss how these combinations of these basic models can be used to make predictive formulas for a variety of realistic situations.  

Section 1:  Choosing a numerical indicator of how well a model fits a dataset

In an earlier topic we computed a numerical indicator of the noise of a measurement process, the standard deviation around the average measurement.  If we had a similar indicator of the scatter of the data around a model, we could use it to guide our search for the best set of model parameters.  Even better, we might be able to get a computer program to help in the search since computers are good at working with numbers.  Our original method of judging a model, visually comparing the data and model graphs, is easy for people but beyond the current capabilities of computers.

While scatter indicators of this kind as often referred to as measuring “goodness of fit”, keep in mind that they are showing the amount of deviation, so smaller is better (these are actually badness-of-fit indicators).  We will find the best model by adjusting the parameters to make the indicator as close to zero as possible.

We want to minimize both positive and negative deviations, since here we care about how close the data is to the model, but not whether it is higher or lower.  In this situation, the most productive way to treat positive and negative deviations the same is to square each deviation (i.e., multiply it by itself, a process that produces positive results for both positive and negative numbers).  We will then minimize some indicator based on these squared deviations.  

In spreadsheets that arranged similarly to Models.xls (input data in column A, output data in column B, model prediction in column C, and data-model deviation in column D), it is natural to put these squared deviations in column E.  This can be done by putting the formula “=D3^2” into cell E3, then spreading that formula down all the data rows.
Example 1:  Add a squared-deviations row to the US-population spreadsheet made in an earlier topic

	
	A
	B
	C
	D
	E
	F
	G
	H
	I

	1
	x
	Y
	y
	Residual
	Squared
	 Exponential model: y = a * (1+r)^x

	2
	Year-1780
	Population 
	Model
	values
	Deviations
	
	y = 2.8 * (1.03^x)

	3
	  0
	2.8
	2.80
	0.0000
	0.000000
	
	2.8
	a: Initial value at x=0

	4
	10
	3.9
	3.76
	0.1370
	0.018778
	
	0.03
	r: Growth rate

	5
	20
	5.3
	5.06
	0.2429
	0.058995
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	6
	30
	7.2
	6.80
	0.4037
	0.162945
	
	

	7
	40
	9.6
	9.13
	0.4663
	0.217430
	
	
	

	8
	50
	12.9
	12.27
	0.6251
	0.390704
	
	
	

	9
	60
	17.1
	16.50
	0.6035
	0.364226
	
	
	

	10
	70
	23.2
	22.17
	1.0301
	1.061103
	
	

	11
	80
	31.4
	29.79
	1.6055
	2.577651
	
	
	

	12
	90
	39.8
	40.04
	-0.2413
	0.058230
	
	
	


What number will be used to represent the squared-deviation values?
If we are going to make decisions about parameter settings by looking at a numerical goodness-of-fit indicator, that indicator must be a single number so we can decide which settings are better by choosing those that give the lowest indicator value.  What indicator should be used to summarize this column of squared deviations?  One obvious possibility, which turns out to be the most generally useful, is the sum of the squared deviations.  This can be computed by applying the spreadsheet SUM function to column E, as by putting the formula “=SUM(E3:E12)” into some empty cell such as H8.
An alternative indicator that is useful in a few situations is simply the largest squared deviation (which comes from the largest deviation, whether positive or negative).  This can be computed with the spreadsheet MAX function, using the formula “=MAX(E3:E12)” in this case.  Other indicators are sometimes constructed that take into account the economic cost in a particular situation of different deviation sizes and/or directions.  But the sum of the squared deviations is by far the most commonly used indicator for fitting models to data, and we will use it in this course except where another indicator is specifically asked for.
Example 2: Improve the earlier population model by using the sum-of-squared-deviations indicator.


The exponential-model parameter settings a = 2.8 and r = 0.03 that were found earlier fit the data pretty well, but of course other nearby settings of the parameters, such as
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would change the graph so little we could not tell by looking whether one of these models is slightly better than the other.  But the numerical sum-of-squared-deviations calculation in H8 provides a way to choose among nearby model settings to get the very best fit.
 [a] Here is the worksheet result from the initial model, which was chosen by setting the first parameter of the model to 2.8 (the data value at x = 0), then adjusting the growth rate until the graphs were close.
	
	A
	B
	C
	D
	E
	F
	G
	H
	I

	1
	x
	y
	y
	Residual
	Squared
	 Exponential model: y = a * (1+r)^x

	2
	Year-1780
	Population 
	Model
	values
	deviations
	
	y = 2.8 * (1.03^x)

	3
	  0
	2.8
	2.80
	0.0000
	0.000000
	
	2.8
	a: Initial value at x=0

	4
	10
	3.9
	3.76
	0.1370
	0.018778
	
	0.03
	r: Growth rate

	5
	20
	5.3
	5.06
	0.2429
	0.058995
	
	
	

	6
	30
	7.2
	6.80
	0.4037
	0.162945
	
	

	7
	40
	9.6
	9.13
	0.4663
	0.217430
	
	Goodness of fit for these settings

	8
	50
	12.9
	12.27
	0.6251
	0.390704
	
	Sum of sq.
	 4.910062

	9
	60
	17.1
	16.50
	0.6035
	0.364226
	
	
	

	10
	70
	23.2
	22.17
	1.0301
	1.061103
	
	

	11
	80
	31.4
	29.79
	1.6055
	2.577651
	
	
	

	12
	90
	39.8
	40.04
	-0.2413
	0.058230
	
	
	


So for a 
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model of this data, the sum of squared deviations equals about 4.91.
[b] If the initial value for the model is increased by 0.1 million (to 2.9 million), the sum of squared deviations drops from about 4.91 to 3.24, a noticeable improvement.  So the 
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 model can be considered slightly better.
	
	A
	B
	C
	D
	E
	F
	G
	H
	I

	1
	x
	y
	y
	Residual
	Squared
	Exponential model: y = a * (1+r)^x

	2
	Year-1780
	Population 
	Model
	values
	deviations
	
	    y = 2.9 * (1.03^x)

	3
	  0
	2.8
	2.90
	-0.10
	0.0100
	
	2.9
	a: Initial value at x=0

	4
	10
	3.9
	3.90
	0.00
	0.0000
	
	0.03
	r: Growth rate

	5
	20
	5.3
	5.24
	0.06
	0.0039
	
	
	

	6
	30
	7.2
	7.04
	0.16
	0.0259
	
	

	7
	40
	9.6
	9.46
	0.14
	0.0196
	
	Goodness of fit for these settings

	8
	50
	12.9
	12.71
	0.19
	0.0348
	
	Sum of sq.
	 3.237818

	9
	60
	17.1
	17.09
	0.01
	0.0002
	
	
	

	10
	70
	23.2
	22.96
	0.24
	0.0568
	
	

	11
	80
	31.4
	30.86
	0.54
	0.2931
	
	
	

	12
	90
	39.8
	41.47
	-1.67
	2.7934
	
	
	


Further small adjustments to G3 might reduce the standard deviation further, but it would be very tedious to try all the settings needed to find the very best fit, especially since we would need to explore values for the growth rate in G4 as well.  Additionally, since a change in one of the parameters will change the effect of the other parameter, several rounds of adjustment would be needed.  This process would be even more difficult for models that have three or more parameters.
But tedious tasks are what computers do best.  Most spreadsheets have a built-in routine that will systematically adjust parameters to a result you ask for (in this case, the minimum value for the goodness-of-fit indicator).  We will use such a built-in routine, Solver, as a way to automate the model-fitting process. 
Section 2:  Using Solver in the Tool menu to find the best-fit parameters for a model

The “Solver” add-in can be used with an appropriately-formatted spreadsheet to tell the computer to do automatically what you did by hand in the earlier model-fitting exercises – adjust the parameters until the model is a good as it can be.  Solver uses the numerical value of the sum-of-squared-deviations indicator (computed in cell H8 in the example spreadsheet) to decide on the best parameters.

When you use Solver for modeling, you will set up a modeling worksheet exactly as the previous example, then use Solver to tell the computer to minimize the cell containing the goodness-of-fit indicator by adjusting the cells containing the parameters.  The software then systematically searches for the parameter settings that result in the smallest standard deviation.  
The Solver routine does not know anything about modeling — it simply changes the numbers in the cells you identify (G3 and G4 in this case), searching for values that produce the result you ask for (minimization) in the target cell that you identify (H8).  This procedure finds the best model because of the way the worksheet is set up, with the sequence of connections where the parameters in column G are used in the model formulas in column C, which determine the data-model deviations in column D and thus the squared deviations in column E, which are added to form the sum of squared deviations indicator.

Since Solver will default to the last values used, once you start using it you will often find that the settings are already correct, so that you can just press “Solve” to get the best-fit model parameters for the current set of data.  If the computer does not find a solution when fitting a model, this usually means that you forgot to set the “Min” option, so that the program is instead trying to find a maximum, an impossible task in this case because there is no limit to how far away the model can get from the data.


Usually Solver will find a correct solution regardless of the initial values of the parameters.  However, it will be more dependable if you start with the parameters having values that put the model graph in the same general region as the data points.  Otherwise the formula may have a value so large or small that the computer cannot handle it correctly.  In any case, it is important to look at the graph of the fitted values to make sure Solver worked correctly — after the computer does the tedious part, it’s your turn to do the thinking that is needed.

Example 3:  Use Solver to find the formula of the best-fit exponential model for the worksheet modified in Example 1 to include a sum-of-square deviations value.
[1] Select the cell containing the sum-of-squared-deviations value (cell H8).
[2] Select Solver from the Tools menu (if it is not there, select Add-Ins and add it).  The dialog box should show the selected cell (e.g., “H8”) in the Set Target Cell section at the top.  If not, enter it.

[3] Choose the “Min” (for Minimum) option in the second line, since we want Solver to find the smallest possible value for the indicator in H8.

[4] Enter “G3,G4” into the “By Changing Cells” section on the fourth line.  This tells Solver to adjust the cells that we are using as model parameters when it is trying to minimize H8.


[5] Press the “Solve” button at top right.


[6] Check the graph (or the numbers in columns B and C) to see if the model now is close to the data, with some on each side.  If it is not, you have made a mistake and must repeat the process correctly.

[7] If the graph is acceptable, press “OK” to accept the solution that is found.  The parameters (and thus the “Model” values in the column C) are now set to the best-fit values to a very high accuracy. 
Answer:

The best-fit exponential model formula for this data is 
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 (with the parameters rounded off to 3 digits to match the data).  The sum of squared deviations for this model is about 1.72, which is only 53% of the 3.24 value found by hand in the previous example, and only 35% of the value for the parameter setting we originally found by visual inspection. 
	
	A
	B
	C
	D
	E
	F
	G
	H
	I

	1
	x
	data y
	model y
	Data-Model
	Squared
	 Exponential model: y = a * (1+r)^x

	2
	Year-1780
	Population 
	Prediction
	deviation
	deviation
	
	y = 3.108069 * (1.028937^x)

	3
	  0
	 2.8
	3.108101
	-0.308101
	0.094926
	
	3.108069
	a: Initial value at x=0

	4
	10
	  3.9
	4.134104
	-0.234104
	0.054804
	
	0.028937
	r: Growth rate

	5
	20
	  5.3
	5.498797
	-0.198797
	0.039520
	
	
	

	6
	30
	  7.2
	7.313983
	-0.113983
	0.012992
	
	

	7
	40
	  9.6
	9.728374
	-0.128374
	0.016480
	
	Goodness of fit for these settings

	8
	50
	12.9
	12.93977
	-0.039770
	0.001582
	Sum of sq. dev.
	 1.721981

	9
	60
	17.1
	17.21127
	-0.111268
	0.012381
	
	
	

	10
	70
	23.2
	22.89281
	0.307187
	0.094364
	
	

	11
	80
	31.4
	30.44987
	0.950128
	0.902744
	
	
	

	12
	90
	39.8
	40.50156
	-0.701561
	0.492188
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Note that the best-fit model has a starting value that is a bit higher than in the earlier models (3.11 instead of 2.8 or 2.9), but this is balanced by the growth rate being slightly lower (0.0289 instead of 0.03).
Also note that the graphs of all three models are quite close to the data, so that any could be considered a good model, and it would not be feasible to choose between them visually.
Example 4:  Use Solver to find the best-fit linear model for the sediment depth data from the topic on linear modeling.
Solution approach:  

[a] Use a spreadsheet as before, but now add the squared deviations into column E and compute their sum with a formula in G11, then use Solver to find the best-fit parameter settings.
[b] Write the linear equation with those parameters used as intercept and slope values.

Answer:  The best-fit linear model to the sediment data is 
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	A
	B
	C
	D
	E
	F
	     G

	1
	x
	y data
	y model
	Residual
	Squared
	
	Linear model: y = m * x + b

	2
	Days
	Depth
	Prediction
	deviation
	deviation
	
	y = 1.759286 x + 12.65714

	3
	10
	29.9
	30.25
	-0.35
	0.1225
	
	12.65714
	 m: Intercept

	4
	20
	48.0
	47.84
	0.16
	0.0247
	
	1.759286
	 b: Slope

	5
	30
	60.5
	65.44
	-4.94
	24.3613
	
	
	

	6
	40
	88.6
	83.03
	5.57
	31.0408
	
	

	7
	50
	102.9
	100.62
	2.28
	5.1919
	
	Goodness of fit for these settings

	8
	60
	114.1
	118.21
	-4.11
	16.9273
	
	Sum of sq.
	120.8929

	9
	70
	141.1
	135.81
	5.29
	28.0143
	
	
	

	10
	80
	149.5
	153.40
	-3.90
	15.2100
	
	


Section 3: Using the sum of squared deviations to compute the standard deviation for a model

While the sum-of-squared-deviations indicator works very well as the target for Solver to minimize, it does not directly provide information about the typical deviation size because several terms are added together, and each term in the sum is squared.  It would be useful to have a standardized goodness-of-fit indicator that did not depend on the number of deviations and was expressed in the same units as the data, model, and deviations.  This would also be valid for comparing the quality of models with different numbers of parameters that are fit to the same dataset.

We can compute such a standardized indicator by computing an average squared deviation, then taking the square root of that value.  The only difference from a regular average is that the divisor is made smaller by the number of parameters (i.e., the divisor is n−2 instead of n for a linear or exponential model, where n is the number of squared deviations in the sum).  
The number computed in this way is the standard deviation of the data from the model.  This is the same kind of indicator as was computed to measure the noise in repeated measurements — in that case the STDEV function adjusted the divisor to be n−1 because the deviation is from a single-parameter model, the average.  For more complex models we have to make an explicit adjustment rather than using the STDEV function.  Since we are already computing the sum of squared deviations, this is not difficult.
For the 8-value sediment data, for example, this computation could be accomplished by the formula “=SQRT(H8/6)”, since H8 already has been set to the sum of the 8 squared deviations from E3 to E10.  For the 10-value population data, the formula to use would be “=SQRT(H8/8)”.  For the earlier 7-value quadratic basketball-path data, the formula would be “=SQRT(H8/4)”, because a quadratic model has three parameters.
The adjustment to the divisor for the average is needed because if there are only two data points for a linear model, for example, then the model can go through them exactly even when there would be scatter if more points from the same measurement process were added.  It is only when there are more points than the number of parameters that you know anything about what scatter can be expected around the model predictions.
Example 5: Modify the worksheets from Examples 3 and 4 so they also compute standard deviation.
Solution approaches (any of these will give correct answers):

[A] Dataset-specific-formulas — Place the formulas “=SQRT(H8/8)” or “=SQRT(H8/6)”, respectively for Examples 3 and 4, into an empty cell in the worksheet, such as H9.  The disadvantage of this approach is that you are likely to forget to change the formula (which is not visible) when the worksheet is re-used with a different number of data points.


[B] Visible count totals — Set H10 to the number of squared deviations summed in forming H8 (this will be the number of data points unless you have excluded some as outliers).  Then set H11 to the number of model parameters (e.g., 2 for linear & exponential, 3 for quadratic).  Finally, set H12 to the formula “=SQRT(H8/(H10-H11))”.  If you re-use this spreadsheet with a different dataset, all you have to change is the deviation count in H10 to the appropriate setting.  The formula in H12 will not need to be changed.

[C] Automatic count totals — Put the formula “=COUNT(E3:E99)” into cell H10.  This will evaluate to the number of cells in column E that have numeric values, indicating the presence of a deviation.  Then follow approach B (set H11 to the number of parameters, and set H12 to the formula “=SQRT(H8/(H11-H12))”.  (Warning: approach C will cause errors if there are any extraneous numbers in column E.) 


Whichever approach is used, the respective standard deviation values, rounded to the usual two significant digits, are σ = 0.46 million people for Example 3 and σ = 4.49 mm for Example 4.

Here is what the census spreadsheet would look like after using approach B or C:
	
	A
	B
	C
	D
	E
	F
	G
	H
	I

	1
	x
	data y
	model y
	Data-Model
	Squared
	 Exponential model: y = a * (1+r)^x

	2
	Year-1780
	Population 
	Prediction
	deviation
	deviation
	
	y = 3.108069 * (1.028937^x)

	3
	  0
	 2.8
	3.108101
	-0.308101
	0.094926
	
	3.108069
	a: Initial value at x=0

	4
	10
	  3.9
	4.134104
	-0.234104
	0.054804
	
	0.028937
	r: Growth rate

	5
	20
	  5.3
	5.498797
	-0.198797
	0.039520
	
	
	

	6
	30
	  7.2
	7.313983
	-0.113983
	0.012992
	
	

	7
	40
	  9.6
	9.728374
	-0.128374
	0.016480
	
	Goodness of fit for these settings

	8
	50
	12.9
	12.93977
	-0.039770
	0.001582
	Sum of sq. dev.
	 1.721981

	9
	60
	17.1
	17.21127
	-0.111268
	0.012381
	
	
	

	10
	70
	23.2
	22.89281
	0.307187
	0.094364
	# of dev. summed
	10

	11
	80
	31.4
	30.44987
	0.950128
	0.902744
	# of parameters
	2

	12
	90
	39.8
	40.50156
	-0.701561
	0.492188
	standard deviation
	0.463948


Section 4:  Using Solver to choose the best kind of model
Sometimes data has a pattern for which more than one kind of model is a potential match.  While visual inspection of the best-fit graphs will usually show which one is best, you can also choose between candidates by seeing which model type has the smallest best-fit standard deviation.
Example 6: Does a quadratic model fit the population data better than the model in Example 3?  Why?
Solution approach:

[a] Use Solver with the Quadratic Model worksheet in Models.xls to fit the same data.


[b] Add the computation of standard deviation to the worksheet.


[c] Compare the standard deviation σ for the quadratic model with that of the exponential model.

Answer:


An exponential model is a better fit to this data than a quadratic model, because the best-fit exponential model 
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 has σ = 0.46 million, while the best-fit quadratic model 
[image: image7.wmf]2

0.0051(6.536)

3.555

yx

=×-

+

 has σ =  0.85 million, which is almost twice as large.


Can you think of another reason that a quadratic model is not likely to be appropriate for this data?  (Hints:  Where is the vertex of the parabola?  What does this imply about the quadratic model’s prediction for years before 1780, the first year given in this dataset?)
Section 5:  Identifying and Removing Outliers in Data

Some datasets include a few points that do not fit into the overall pattern.  These points are called “outliers”, and require special handling if a model is to be fit to the dataset.  In general, the approach to modeling data with outliers is to exclude them from the fitting process but report them separately along with the model formula.

Sometimes outliers are simply mistakes in the data.  Measurement is not a perfect process, and errors in a measurement device or in writing down the measurement results can lead to bad values in a dataset.  One benefit of looking at the overall pattern of the data is that it usually will reveal any substantial errors of this kind.  

On the other hand, some outliers are accurate measurements but report anomalies, situations that are different from the typical situation in which the other measurements were made.  Measurements of Sunday pedestrian traffic in downtown Austin, for example, would show an outlier each spring due to the Capital 10K race.  

It is important to report outliers, so that people depending on measurements similar to those that produced the data are alerted to the possibility of large deviations from the general trend of the data.  Even if the outlier is a mistake, it is an indication that users should watch out for similar mistakes.  If the outlier is an anomaly, it is possible that it is the most important part of the data.  For example, we would want the people who design bridges to design for the maximum load and not the typical load.

When using Models.xls to find best-fit models, we can exclude outliers from the fitting process by erasing the content of the column E cell for each row that contains outlier data.  This means that the deviation associated with the outlier value is not counted in computing the standard deviation, and thus does not influence the fitting process.  

	Example 7: Using the dataset shown to the right:


[a] Fit and report on  a linear model using all of the data


[b] Fit and report on a linear model with the outlier excluded.

Solution approach:


[i] Copy the data to a Linear Model worksheet in Models.xls.


[ii] Spread columns C, D, and E down to match the data, as usual.


[iii] Make a graph of the data and model together, as usual.


[iii] Use Solver to find the best-fit parameters and standard deviation.


[iv] Erase cell E6, since the graph shows the data in row 6 is an outlier.


[v] Use Solver again, to find results with the outlier excluded.
Answers:


[a] With all the data, the best-fit linear model is 
[image: image8.wmf]2.20166.8
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, σ = 33.16

[b] Without the outlier at (x = 20, y = 35.3), the best-fit linear model is 
[image: image9.wmf]2.56186.8
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, σ = 1.91
	Remaining fuel

in engine tank
minutes
liters
5
174.4
10
160.1
15
149.7
20
35.3
25
123.8
30
105.4
35
96.7
40
87.0
45
72.1
50
57.6



[image: image20.emf]US Airline Traffic Model, 1990-2000 data
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Notice that removal of the outlier makes a great difference in the size of the standard deviation, since the way standard deviations are computed emphasizes any large deviations.

Is this particular outlier a mistake or an anomaly?  You can’t tell from the numbers, since any type of outlier consists of big deviations.  But in this case the caption for the data indicates a process that logically must change smoothly.  Thus this outlier is a mistake.  Examination of the data suggests that the “35.3” y value for the outlier should have been about 100 higher, so perhaps an actual measurement of “135.3” was copied incorrectly.
	Example 8: For the U.S. airline-passenger data provided to the right below:


[a] Report the best-fit linear model formula and its standard deviation, using all the data points provided.


[b] Examine the graph and list of deviations in column D to identify any data points which are outliers from the data trend from 1990 to 2000.

[c] Report the best-fit line and σ when the outliers are excluded.

	   [d] In this case, are the outlier points mistakes or anomalies?  
   [e] How many 2006 passengers would there have been (to the nearest million) if US air traffic had continued its 1990-2000 trend?

   [f] Has the airline industry fully recovered its 1990-2000 trend?  Why?
Answers:

[a] The all-data model is 
[image: image10.wmf]17.6454.3
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, σ = 25.1 million passengers.
[b] The points for the years 2001, 2002, and 2003 are clearly outliers.  The points for 2004, 2005, and 2006 are also low but are closer to the 1990-2000 trend; borderline cases of this kind are a matter of judgment, and either analysis is correct as long as you describe what decisions you have made.
[c] The best-fit linear model for the 1990-2000 data is
[image: image11.wmf]22.1439.5
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, with σ = 12.4 million passengers.
[d] These outliers are anomalies, which reflect a real change in conditions.

[e] The trend for 2006 was 793 million (cell C19 of the 1990-2000 model).

[f] Air business has not fully recovered, because actual 2006 air traffic of 745 million was 48 million passengers below the pre-2001 trend, and all actual values since 2001 have been lower than the pre-2001 trend.
	US Airline Traffic
Years

since 1990

Passengers
(millions)

0

465.6

1

452.2

2

473.3

3

487.2

4

528.4

5

547.4

6

581.2

7

598.9

8

612.9

9

635.4

10

665.5

11

622.1

12

612.9

13

646.5

14

702.9

15

738.6

16

744.6




Worksheet showing the result of fitting the data:
	
	A
	B
	C
	D
	E
	F
	              G                          H

	1
	X
	y data
	y model
	Residual
	Squared
	
	Linear Model: y = m * x + b

	2
	Year-1990
	Passengers
	prediction
	deviation
	deviation
	
	y = 22.06643 x + 439.4858

	3
	0
	465.6
	439.49
	26.11
	681.9503
	
	439.4858
	b: Intercept

	4
	1
	452.2
	461.55
	-9.35
	87.4647
	
	22.06643
	m: Slope

	5
	2
	473.3
	483.62
	-10.32
	106.4753
	
	
	

	6
	3
	487.2
	505.69
	-18.49
	341.6996
	
	

	7
	4
	528.4
	527.75
	0.65
	0.4205
	
	Goodness of fit for these settings

	8
	5
	547.4
	549.82
	-2.42
	5.8466
	sum of sq. dev.
	1380.672

	9
	6
	581.2
	571.88
	9.32
	86.7801
	
	
	

	10
	7
	598.9
	593.95
	4.95
	24.4941
	# of dev. used
	11

	11
	8
	612.9
	616.02
	-3.12
	9.7174
	# of parameters
	2

	12
	9
	635.4
	638.08
	-2.68
	7.2023
	Standard deviation
	12.3858

	13
	10
	665.5
	660.15
	5.35
	28.6210
	
	
	

	14
	11
	622.1
	682.22
	-60.12
	 
	
	

	15
	12
	612.9
	704.28
	-91.38
	 
	
	

	16
	13
	646.5
	726.35
	-79.85
	 
	
	

	17
	14
	702.9
	748.42
	-45.52
	 
	
	

	18
	15
	738.6
	770.48
	-31.88
	 
	
	

	19
	16
	744.6
	792.55
	-47.95
	 
	
	

	20
	
	
	
	
	
	
	


Section 6:  Distinguishing between linear and gently-curved data by examining deviation values


While many data relationships are linear, it is also not unusual to have relationships that are close to linear, but have a slight curve in the pattern, too small to be obvious in the graph, due to some small additional nonlinear effect.  Linear-modeling spreadsheets often make it possible to detect such a situation by looking at how positive and negative deviation values are distributed (in column C in Models.xls) when the best-fit linear model has been found.

If such data is nonlinear and also low-noise, most deviations around the middle third of the input-value range will have the same sign, with the deviations at each end of the input-value range mostly having the opposite sign.  This is similar to the obvious visual effect that fitting a line to strongly parabolic data would produce, but can work even when the deviations are small, as long as they are larger than the noise.  

Another way of looking for this effect is to do a scatter plot of the input values and the deviations (for spreadsheets like Models.xls, this is columns A and D, with columns B and C left out).  If such a residual graph of the deviations from the best-fit linear model displays a curved line rather than random noise, this is a sign that the data is significantly nonlinear.  However, the automatic-scaling feature of spreadsheet graphs means that any outliers in the data will compress the scale so that most deviations look flat – this is why looking at the distribution of the signs of the deviations can be less confusing.
Section 7:  Adapting a modeling spreadsheet to use any modeling formula that is specified

The only important differences between the various templates in Models.xls are the formula that is put into cell C3, and the labels that are put in column H next to the parameters that start at row 3 in column G.  This means that a spreadsheet can easily be adapted to any specified formula.
These are the formulas that are the same in every modeling spreadsheet that uses the Models.xls layout:

· “=B3-C3” in cell D3 (this computes the deviation from the model)

· “=D3^2” in cell E3 (the computed the squared deviation)

· “=SUM(E3:E100)” in cell H8 (this is the sum of squared deviations, which Solver will minimize)

Cell C3 will have a different formula for each type of model.  These formulas will use “A3” to refer to x (this will automatically change to A4, A5, etc. as the formula in C3 is spread down to the other data rows.  For the parameters of the model, the formula in C3 will use absolute references to cells in column G:  $G$3 for the first parameter, $G$4 for the second parameter, etc.  For clarity, each parameter should have a label put beside it in column H, but the labels do not affect Solver or the fitting process.

To make a spreadsheet apply to a specific model, the following three steps are essential (in addition to the standard formulas that are entered into columns D and E, and into cell H8:

[1] Identify the parameters in the model we intend to use.

[2] Decide which parameter cell in column G (e.g., G3) corresponds to each parameter.

[3] Enter an appropriate spreadsheet formula for the model into cell C3 
(and spread it down beside all the data rows, along with the formulas in D3 and E3).

It will be easier to use the new model if we also take two additional steps:


[4] Put labels in column H next to each of the chosen parameters in column G.


[5] Describe the kind of modeling formula either in G1 or on the tab of the worksheet.

Once these modifications have been made, the worksheet is used in the same way as the other templates:

· Make a graph of the data and model together, so that you can see if a good fit is found.

· Set the parameters to initial values that ensure the model and data are in the same region.
· Use the Solver tool to minimize H8 (the sum of squared deviations).

Often a new model formula is based on a combination or adaptation of  models you already have used.  For example, we earlier used an exponential model to fit data showing the cooling of a liquid to a known room temperature.  What if the room temperature had not been known?  We could have found it from the data by adding it as a parameter to the exponential model, which would now be an exponential-plus-baseline model.  The model suitable for that is shown in the example below.
	Example 10:  Fit the model y = a (1+ r)x + b to this dataset (a, r, and b are parameters)
Solution:
   Modify a spreadsheet to use this formula and the standard modeling components:
     [a] copy the data to columns A & B of a sheet, with the numbers starting in row 3.

     [b] assign cells G3, G4, and G5 to parameters a, r, and b, respectively.
     [c] set cell C3 to the formula “=$G$3*(1+$G$4)^A3+$G$5”.

     [d] set cells D3 to “=B3-C3” and E3 to “=D3^2”, as usual.

     [e] spread the formulas in C3, D3, and E3 down beside all the data rows.

     [f] set cell H8 to “=SUM(E3:E99)” to compute the sum of squared deviations.

     [g] tell Solver to minimize cell H8 by changing G3, G4, and G5.
   The resulting parameter settings are a = 54.2, r = 0.13, and b = 75.   These show that the liquid started at 54.2 degrees above the room temperature of 75 degrees, and cooled at the rate of 13% of the difference per minute.
	Minutes
Degrees
0

127.2

1

116.4

2

107.7

3

100.8

4

95.3

5

91.0

6

87.7

7

85.3

8

82.9

9

81.3

10

79.9

11

78.9




Section 8:  Using alternative goodness-of-fit indicators


The standard deviation (or the sum of squared deviations on which it is based) is an example of what is called a “cost” function, a computed value that an adjustment or decision process tries to make as small as possible.  While standard deviation is by far the most commonly used cost function in modeling processes, there are other possible ways to measure a model’s quality that can be more appropriate in some circumstances.  Usually these different cost functions are designed to reflect differences in economic costs of different errors (such as when an overestimate has more expensive consequences than an under​estimate), to limit the effect of big deviations on the fitting process (so that a single bad value will not change the model vary much), or to allow for cases where the importance of a deviation depends on the size of the deviation relative to the data value (which is often true for exponential models).


If you use an alternative goodness-of-fit indicator to find a “best-fit” model, make an explicit statement about what indicator was minimized.  This is needed both so that people can decide how to use the model, and so that they would be able to reproduce your results from the same data. 

Using the maximum deviation as an alternative goodness-of-fit indicator


Standard deviation is a good description of the size of the typical deviation between a model and its data.  But in some situations you may be more concerned about the maximum difference, rather than about the size of the typical difference.  This can happen when you want to be able to identify a deviation amount that people can confidently expect will not be exceeded (although in that case you will usually need to allow some extra margin based on the typical random noise).
If you want to minimize the greatest difference between the population model and any individual population value, you would use the indicator “=MAX(E3:E12)” (placed in a spare cell such as H9) rather than “=SUM(E3:E12)”.  If Solver is asked to minimize a cell with this formula (e.g., H9), it will adjust G3 and G4 (and any other parameters) in ways that may make the standard deviation higher, but will make the maximum distance above or below the data as small as is possible for the chosen kind of model.

Example 11:  Find the exponential model that minimizes the maximum deviation from the census data.
	
	A
	B
	C
	D
	E
	F
	G
	H
	I

	1
	x
	y data
	y model
	Residual
	Squared
	 Exponential model: y = a * (1+r)^x

	2
	Year-1780
	Population 
	Prediction
	deviation
	deviations
	
	MODEL PARAMETERS

	3
	  0
	  2.8
	3.420962
	-0.620962
	0.385594
	
	3.420962
	a: Initial value at x=0

	4
	10
	  3.9
	4.501465
	-0.601465
	0.361761
	
	0.0278937
	r: Growth rate

	5
	20
	  5.3
	5.923243
	-0.623243
	0.388432
	
	
	

	6
	30
	  7.2
	7.794087
	-0.594087
	0.352939
	
	

	7
	40
	  9.6
	10.25583
	-0.655832
	0.430116
	
	Goodness of fit for these settings

	8
	50
	12.9
	13.49511
	-0.595114
	0.354161
	
	Sum of sq dev
	 3.592537

	9
	60
	17.1
	17.75752
	-0.657517
	0.432328
	
	Max sq dev
	0.432328

	10
	70
	23.2
	23.36619
	-0.166189
	0.027619
	
	

	11
	80
	31.4
	30.74635
	0.653651
	0.427259
	
	
	

	12
	90
	39.8
	40.45752
	-0.657517
	0.432328
	
	
	



Note that the best-fit parameters using this indicator are slightly different from those that arose from minimizing the sum of squared deviations: a is now 3.42 rather than 3.11, and r is 2.79% instead of 2.89%.  This would not make much visible difference in the graph (since the slightly-higher starting value is mostly balanced by the slightly-lower growth rate), but the maximum squared deviation has been cut about in half, to 0.43 rather than 0.95.  On the other hand, the sum of squared deviations is more than twice as large (3.59 rather than 1.72), resulting in a standard deviation that is 44% larger.  Such trade-offs are typical with different cost functions — the model will be better for what you focus on, but not quite as good for other purposes.
Relative standard deviation


A relative deviation is the data-minus-model difference divided by the value of the model. This ratio can be expressed as a decimal fraction or a percentage – a few percent would be typical of most situations.  Relative deviations can be useful when the model will not have zero values (in which case the division would not work) and there is a natural zero to the data scale (so that the ratio has corresponds to some real relationship).
If we wish to use relative deviations in a worksheet like Models.xls, we replace the formula “=B3-C3” in cell D3 (and similarly other column-D cells) by the formula “=(B3-C3)/C3”. Nothing else in the worksheet need be changed.  Now Solver will minimize the sum of squared relative deviations, since that is now what is being computed in H8.  The relative standard deviation can be computed from that sum in same way as before, with the formula “=SQRT(H8/(10-2))” in this case, which has 10 data points and 2 parameters.
Example 12: Fit an exponential model to the population data, minimizing relative standard deviation; state the best-fit formula and the relative standard deviation..
Solution approach:


[a] Make a copy of the Exponential Model worksheet in Models.xls.


[b] Set cell D3 to the formula “=(B3-C3)/C3” to make column D relative deviations


[c] Copy the data to the worksheet and find the best-fit exponential model using Solver.


[d] Set H12 (or some other cell) to “=SQRT(H8/(10-2))”, to compute standard deviation


[e] Put appropriate labels in cells G8 and G10 to explain the contents of H8 and H10.


[f] Report the resulting formula and relative standard deviation.

Answer:


The best-fit exponential model for this data when minimizing relative standard deviation is 
[image: image12.wmf]2.91(1.0300)
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, whose relative standard deviation from the data is 0.0231, or 2.31%.
The worksheet for the above example should look similar to this:

	
	A
	B
	C
	D
	E
	F
	G
	H
	I

	1
	x
	y data
	y model
	Residual
	Squared
	 Exponential model: y = a * (1+r)^x

	2
	Year-1780
	Population 
	Prediction
	deviation
	deviations
	
	MODEL PARAMETERS

	3
	  0
	  2.8
	2.907038
	-0.03682
	0.001356
	
	2.907038
	a: Initial value at x=0

	4
	10
	  3.9
	3.906720
	-0.00172
	2.96E-06
	
	0.029997
	r: Growth rate

	5
	20
	  5.3
	5.250177
	0.00949
	9.01E-05
	
	
	

	6
	30
	  7.2
	7.055627
	0.02046
	0.000419
	
	

	7
	40
	  9.6
	9.481941
	0.01245
	0.000155
	
	Goodness of fit for these settings

	8
	50
	12.9
	12.74263
	0.01235
	0.000153
	Sum of sq rel dev
	 0.004275

	9
	60
	17.1
	17.12461
	-0.00144
	2.06E-06
	
	
	

	10
	70
	23.2
	23.01348
	0.00811
	6.57E-05
	Relative std dev
	0.023117

	11
	80
	31.4
	30.92743
	0.01528
	0.000233
	
	
	

	12
	90
	39.8
	41.56287
	-0.04242
	0.001799
	
	
	



The reason that these model parameters are slightly different from those that Solver found when minimizing the absolute standard deviation is that using relative standard deviation means that deviations from the smaller values count more in the fitting process than they did before.  This is because a deviation of 0.1 million is about 3.5% of the 2.8 million for 1780, while that same 0.1 deviation is only 0.25% of the 39.8 million population 90 years later.


Exponential models are good possible uses for relative standard deviation since such models are based on constant-percentage relative growth or decay, and never have a zero value that would make it impossible to compute the ratio.  However, absolute standard deviation is still the most usual fitting method even for this kind of model, and should be used unless you have a specific reason to use some other cost function. 
Procedure for using Solver with a template from the Models.xls spreadsheet:


[i] Set up an appropriate worksheet:



[a] Make a copy of the template for the desired model, and put the data into columns A and B.



[b] Spread the formulas in C3, D3, and E3 down to the same number of rows as the data.



[c] Make a graph with a scatter plot that shows both the data and the model.



[d] Set the model parameters to a rough estimate, so that the two graphs are nearby.


[ii] Select Solver from the Tools menu and fill out the dialog box it displays:


[a] Enter the name of the cell containing the standard deviation in the “Set Target Cell” section at the top of the Solver dialog box (this the bottom computed cell in column G).



[b] Choose the “Min” (for Minimum) option in the second line, since we want Solver to find the smallest possible value for the standard deviation.



[c] Designate the parameter cells (“G3,G4” for models with two parameters, “G3:G5” for models with three parameters, etc.) in the “By Changing Cells” section on the fourth line.



[d] Press the “Solve” button at top right.


[iii] Check the graph to see if the model now is close to the data, with some on each side.  If it is not, you have made a mistake (probably in step [ii]) and must repeat the process correctly.  If the model goes through the data but is the wrong shape, you are probably using an inappropriate model.


[iv] If the graph is acceptable, press “OK” to accept the solution that is found.  The parameters (and thus the “Model” values in the column C) are now set to the best-fit values to a very high accuracy.

EXERCISES:

Part I —  Reproduce the results in Examples 1 – 12.
Part II — Work the assigned problems
[13] A bank balance earning a constant rate of compound interest has these values:  $1550 after 5 years, $2002 after 10 years, $2585 after 15 years, $3339 after 20 years, and $4313 after 25 years.  What was the original deposit amount (that is, the balance after 0 years), and what annual interest rate was applied?

[14] The activity of a radioactive substance is measured on the same day each year for several years, with these results:  5.7 Curies after 1 year, 3.8 Curies after 2 year, 2.6 Curies after 3 years, and 1.7 Curies after 4 years.  What is the decay rate of the substance?  What will the activity be after 10 years?

Problems 15–24 have the same instructions, applied to different datasets.  Copy and paste the datasets from the course web site copy of this topic into the Models.xls spreadsheet, rather than retyping them.
For each of the datasets listed below
[a] Display the dataset and visually determine which of the models discussed in this topic is most suitable for this data.
[b] Identify which points, if any, are outliers for this dataset.

[c] Fit an appropriate model to the dataset, omitting the outliers (if any are present).

[d] Report the best-fit model parameters and their standard deviation for this data.
	[15] Dataset A

x
y
5

457.4

10

250.9

15

138.7

20

76.2

25

41.4

30

22.9

35

12.6

40

78.0
45

4.5

50

1.8

55

1.4

60

0.8


	[16] Dataset B

x
y

0

172

1

195

2

216

3

230

4

244

5

256

6

261

7

266

8

264

9

262

10

255

11

247


	[17] Dataset C

x
y

0

314.27

0.5

297.66

1

282.01

1.5

267.46

2

249.19

2.5

235.10

3

218.96

3.5

20.06

4

184.62

4.5

166.80

5

145.85

5.5

131.63


	[18] Dataset D

x

y
1

239.7

2

296.6

3

386.6

4

469.9

5

597.6

6

777.3

7

952.2

8

1180.0

9

1424.4

10

1682.6

11

1980.3

12

2309.7


	[19] Dataset E

x

y

1992

45,619

1993

49,529

1994

53,405

1995

57,228

1996

60,877

1997

65,003

1998

68,849

1999

72,399

2000

76,529

2001

80,448

2002

84,030

2003

88,027



	[20] Dataset F

x

y

0

-68

1

-66.1

2

-62.6

3

-56.3

4

-47.3

5

-35.4

6

-23.4

7

-1.0

8

11.4

9

34.3

10

61.3

11

91.8

12

119.3

13

151.8

14

188.5

15

225.8

16

266.4

17

309.1

18

352.1

19

402.4

20

451.2


	[21] Dataset G

x
y
0

10.65

1

8.46

2

7.10

3

5.60

4

4.74

5

3.90

6

3.09

7

2.62

8

2.00

9

1.55

10

1.47

11

0.98

12

0.76

13

0.97

14

0.62

15

0.49

16

0.42

17

0.29

18

0.27

19

0.21

20

0.20


	[22] Dataset H

x

y

5.7

740.79

20.0

722.19

44.4

690.51

61.0

668.94

76.8

648.33

117.2

595.89

125.9

684.50

133.7

574.36

151.9

550.79

176.8

518.33

191.5

499.26

205.8

480.61

225.0

455.74

237.9

438.93

250.4

422.71

276.2

389.13

298.2

360.53

321.4

330.37

343.9

201.12

348.7

294.86

379.0

255.51


	[23] Dataset I

x

y

0

50.9

1

158.9

2

63.9

3

71.5

4

77.7

5

83.6

6

87.9

7

92.9

8

94.4

9

94.1

10

98.2

11

99.3

12

100.1

13

98.4

14

100

15

96.5

16

92.8

17

90.6

18

88

19

83.4

20

77.5


	[24] Dataset J

x

y

232.27

448.127

87.53

634.918

307.27

346.181

98.05

620.371

312.34

342.395

277.44

387.947

462.19

147.666

211.58

471.990

145.38

558.238

309.27

346.403

449.25

164.451

196.22

491.841

335.40

312.652

187.02

505.495

131.27

577.226

354.55

287.090

336.17

310.246

369.39

266.686

124.17

586.563

214.03

467.349

386.05

246.012




 [25] Scientists have found that the total energy requirements of animals increase somewhat more slowly than body size.  For example, a 1.2-pound mongoose requires 47 kilocalories per day, a 10-pound fox requires 240, a 22-pound bobcat requires 440, a 100-pound wolf requires 1350, a 300-pound lion requires 3100, a 400-pound tiger requires 3850, and a 700-pound polar bear requires 5900.  

[a] What are the best-fit parameters to this data for a “power” model?  [The general formula for a power model is y = a * x^b.]

[b] What is the standard deviation of the data from the best-fit model?


[c] Does this data support the idea that a power model is appropriate for predicting the energy requirements of animals?

[d] What daily energy requirement can be expected for a 45-pound lynx?

[26] The frequency of earthquakes varies by their size, with stronger ones being less frequent.  In a recent one-year reporting period, the number of earthquakes detected at a particular facility was: 302,417 magnitude-2 quakes, 36,288 magnitude-3 quakes, 4,354 magnitude-4 quakes, 525 magnitude-5 quakes, and 60 magnitude-6 quakes.
[a] What are the best-fit parameters to this data for an exponential model, where the magnitude is the input parameter and the earthquake count is the output variable?
[b] What is the standard deviation of the data from the best-fit model?
[c] Does the data support the idea that this relationship is exponential?

[d] How many magnitude-7 earthquakes does this model predict this facility will detect each year?

[27] For Dataset C, find the inverse model (that is, the model when the x and y columns are swapped).
[28] For Dataset J, find the inverse model (that is, the model when the x and y columns are swapped).

[29] For Dataset G, use Solver to find the best-fit parameters if the spreadsheet is modified to minimize the relative standard deviation.  Compare these parameters to those found in Exercise 21.
	Exercise 30

Dataset K
x

y

0

0.192

0.25

0.171

0.5

0.152

0.75

0.140

1

0.129

1.25

0.117

1.5

0.112

1.75

0.104

2

0.098

2.25

0.088

2.5

0.087

2.75

0.081

3

0.075

3.25

0.073

3.5

0.069

3.75

0.068

4

0.061

4.25

0.061

4.5

0.058

4.75

0.057

5

0.055


	Exercise 31
Dataset L
x

y

10

263

20

378

30

453

40

525

50

585

60

646

70

693

80

744

90

789

100

827

110

871

120

908

130

943

140

985

150

1013

160

1052

170

1081


	Exercise 32
Dataset M
x

y

0

8

2

193

4

364

6

529

8

657

10

722

12

725

14

678

16

531

18

426

20

235

22

61

24

-162

26

-335

28

-467

30

-637

32

-693

34

-721

36

-670

38

-570

40

-461

42

-303

44

-61

46

98

48

300

50

468

52

579

54

688

56

735

58

713

60

620

62

498

64

325

66

134

68

-57

70

-248

72

-437

74

-574

76

-683

78

-724

80

-743

82

-645

84

-513

86

-345

88

-182

90

13

92

216

94

405

96

540

98

660


	Exercise 33
Dataset N
x

y

-3.0

0

-2.8

0

-2.6

0

-2.4

1

-2.2

2

-2.0

4

-1.8

11

-1.6

17

-1.4

35

-1.2

60

-1.0

97

-0.8

94

-0.6

187

-0.4

205

-0.2

236

0.0

237

0.2

228

0.4

208

0.6

182

0.8

118

1.0

82

1.2

51

1.4

25

1.6

15

1.8

9

2.0

1

2.2

2

2.4

0

2.6

0

2.8

0

3.0

0


	Exercise 34
Dataset O
x

y

-7

0.0

-6

0.2

-5

0.9

-4

1.2

-3

3.0

-2

5.0

-1

8.1

0

12.2

1

16.6

2

19.7

3

21.6

4

23.2

5

23.8

6

24.2

7

24.3


	Exercise 30-34 Instructions
   The formulas supplied below (in both algebraic form and as the spreadsheet formula for C3) will fit the corresponding dataset well as soon as the best settings are found for the parameters a and b. 

   For each formula supplied, make a worksheet that uses it as a model.  Then put the specified dataset into the worksheet and use the Solver tool to find the a and b values that fit the dataset best.
   For Dataset K, use formula

[image: image13.wmf]1

()
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=1/($G$3+$G$4*A3)
[Start with G3=5 & G4=1]
For Dataset L, use formula

[image: image14.wmf]b

yax

=×


=$G$3*A3^$G$4

[Start with G3=1 & G4=1]
For Dataset M, use formula

[image: image15.wmf]sin()

yabx

=××


=$G$3*SIN($G$4*A3)
[Start with G3=1000 & G4=1]
For Dataset N, use formula

[image: image16.wmf]2

x

yab
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=$G$3*($G$4^-(A3^2))
[Start with G3=100 & G4=2]
For Dataset O, use formula

[image: image17.wmf]1

x

a

y

b

=

+


=$G$3/(1+$G$4^A3)

[Start with G3=10 & G4=1]
[Optional: for each model, choose names for the a and b parameters that are suggestive of the effect that parameter has on the model.]






















































































































































































Column E now contains the formulas


   “=D3^2” in E3


   “=D4^2” in E4


   “=D5^2” in E5


   et cetera, for each data row
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