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Modeling, Part VI.  Combining Modeling Formulas
Objectives:

1. Be able to make and use compound models, in which two basic models are added together.

2. Detect and avoid confounding of parameters in compound models.

3. Construct and use composite models by combining formulas with IF, MAX, or MIN functions.

4. Use compound or composite models to separate different effects reflected in a dataset.

Overview
Combining models by addition: 

Nine different kinds of basic models have been discussed in this course so far: constant average, linear, quadratic, exponential, logistic, normal, sinusoidal, power and logarithmic functions.  Each reflects a particular type of relationship that frequently occurs between two variables.  Thus often the best-fit settings of one of these basic models will fully match a measurement set, except for random noise.

But sometimes more than one type of process significantly influences the relationship between two variables.  In such cases, combining two or more basic models is needed to provide a formula that fits the data well.  This increases the number of model parameters, but the automated fitting that Solver supplies makes it almost as easy to fit a six-parameter combined model as a two-parameter basic model.

Most often the combination is just the sum of two basic model formulas (such as an exponential model plus a baseline value, as would be appropriate to model the temperature of an object cooling off to an unknown room temperature).  It may even be useful to combine two models of the same type but with different parameter settings – a model of outdoor temperature might consist of one sinusoid with a one-day wavelength (matched to day/night effects) added to another sinusoid with a one-year wavelength (reflecting seasonal changes).  Occasionally what is needed for a good fit is more complicated, such as when the output of one basic model is used as the input to another type of model.
	Examples of compound models, formed by addition of two basic models

	[image: image1.emf]Exponential cooling to a non-zero baseline
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	[image: image2.emf]Sum of two sinusoids with different wavelengths
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The main potential difficulty that can arise from combining models is that sometimes particular parameters in the two models control the same thing (e.g., vertical offset), a situation called confounding.  When Solver searches for a fit in such a case, it is unpredictable which of these parameters it will change, or what final values they will reach.  The solution to this difficulty is to drop one of the parameters from the compound model – which one is usually obvious when the meaning of the parameters is considered.
Combining models by composition (using different models for different ranges of input values):
Sometimes a relationship between two variables matches different formulas for different parts of the range of input values.  One way this may be modeled in a spreadsheet is by using the different formulas with the IF function – for example, if C3 contains “=IF(A3>100,400*A3,4*A3^2)”, the model function will change from linear to quadratic for values of x greater than 100.  In a real modeling formula, the two formulas used in the IF function would also include parameter references such as $G$3 and $G$4.  If the transition point is not known from the problem, it can be made a parameter, and thus deduced from the data (such a formula might begin “=IF(A3>$G$3,...” ).
Another way that different formulas can be used in different regions is to use the MAX (or MIN) functions so that the larger (or smaller) result of two formulas is used.  This is often appropriate in situations where two separate processes are acting to limit the relationship.  An example is the speed of a car as it brakes to a stop as fast as it can, where the rate of deceleration is limited by whichever of two effects is smaller: the friction of the tires with the road, and how much heat the brakes can dissipate.
	Examples of composite models, formed by using different model formulas for different input ranges

	[image: image3.emf]IF function -- linear for x<30, then exp
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	[image: image4.emf]Maximum of linear and quadratic
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An abrupt change in slope or value in graphs of models produced by these composition methods generally makes it obvious where the model switches from one formula to the other.
Section 1:  Compound models – adding two model formulas to model combined effects

Compound-model application 1: Modeling mixed populations


In an earlier topic we discussed normal-distribution models, whose graph is a “bell-shaped” curve with a single peak.  This model is appropriate in many situations where some characteristic of a group of generally-similar objects is distributed around an average value.  But when two groups with different averages are mixed, the resulting distribution may have two partially-overlapping peaks, as illustrated below by a dataset on the height of a combined population of male and female students.  A single normal distribution will not do a good job of modeling this data.
	Example 1:

 Height data from
 a co-educational population
	[image: image5.emf]Height distribution of 10,000 college seniors (inches)
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The data that produced the above graph is shown in a table to the right.  A plausible model for data of this kind is the sum of two normal distributions.  This will entail six parameters: total, average, and width for each normal.  The formula to be placed into C3 will thus be “=$G$3*NORMDIST(A3,$G$4,$G$5,FALSE)+
$G$6*NORMDIST(A3,$G$7,$G$8,FALSE)”;   as always, it should be spread down column C beside all the data rows.

As usual, we will set the initial values for the parameters to reasonable approximations before using Solver.  In this case, we can do that by setting each “total” parameter to 5,000 (half the overall total), setting the “average” parameters to the approximately the x positions of the two peaks (64 and 70 are close enough), and setting both “width” parameters to a value, such as 2 or 3, that gives a model that is reasonably similar to the data.  Then use Solver to minimize the sum of squared deviations, answering “G3:G8” in the “By changing cells” entry field so that all six parameters will be used.  As shown below, a good fit is found.

Parameters (two-normal sum)

5529.128

 Total 1
63.72487

 Average 1

2.685645

 Width 1
4569.312

 Total 2
70.38119

 Average 2

2.728443

 Width 2
Goodness of fit of this model

1710.994

 Sum of squared deviations

7.429222

 Standard deviation


This best-fit model does more than give a formula for describing the height distribution of the combined male-female population.  Because it fits the data so well, we can confidently deduce the characteristics of the male and female distributions from the parameters for the two normal distributions, even though we do not have any data that identifies gender, and even though both males and females contribute to each height total.  Clearly the first normal describes the height distribution of females and the second normal describes the height distribution of males.  Thus we can use these results to see that 45.7% is the answer to the question “How much of this data came from males?”, and that 63.7 inches is the answer to the question “What was the average height of the female part of this sample?”.
	Height

Students

48

0

49

0

50

0

51

0

52

0

53

0

54

0

55

2

56

12

57

29

58

79

59

180

60

326

61

481

62

673

63

813

64

864

65

825

66

751

67

717

68

677

69

700

70

735

71

658

72

568

73

424

74

280

75

167

76

75

77

25

78

13

79

7

80

0

81

1

82

1

83

0

84

0




If we individually graph the two normal distributions found here along with their sum we can see the components that combined to form the data distribution:

[image: image6.emf]Height distribution of female and male college seniors
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This same sum-of-two-normal-distributions approach can be used in a variety of situations.  Sometimes the component distributions have about the same average but greatly different widths, so that the resultant distribution has “fat tails”.  Other times the distributions have substantially different totals but nearby averages, so that the result looks like the larger distribution with a bump added on one side.  It is often the case that an investigator is interested in only one of the component distributions, with the other values being ignored after the fitting process.  An example of each of these kinds of two-normal situations are given below, with the components shown (thin lines) as well as the sum (dots) that reflects the data that would be observed.

	[image: image7.emf]Similar averages, different widths


	[image: image8.emf]Similar widths, different totals



	Examples of the sum of two differing-parameter normal-distribution functions


Compound-model application 2: Determining the contents of a mixture of radioisotopes

Materials with small amounts of radioactivity can be used in medical diagnosis and treatment.  The way these are made (irradiation in a nuclear reactor) often results in a mixture of different radioisotopes.  Each type of radioisotope has an exponential decay pattern with a specific decay rate.  Thus the best model for the overall radioactivity of the material at each time is the sum of two or more basic exponential models.  Fitting the data with such a compound model will then show the decay rates and the relative amounts of each radioisotope formed.  Since scientists have identified the decay rates of all the different radioisotopes, the fitting results usually are enough to identify them.
	Example 2: The data to the right show radioactivity measurements taken at one-hour intervals.  Even though the data graph (the solid dots in graph below) has a shape similar to that of a decaying exponential, a single exponential-decay model (the circles in the graph below) does not fit the data well.  Test whether the data could be fit well by the sum of two exponential models.  If so, report the two decay rates and the relative activity of the two components.
[image: image9.emf]Best-fit one-exponential model (circles)
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	Hours

Activity

0

1333

1

799

2

513

3

359

4

270

5

220

6

191

7

173

8

154

9

145

10

137

11

134

12

122

13

113

14

109

15

104

16

95

17

94

18

88




Solution:

To fit the data to a model based on the sum of two basic exponential-decay models, four parameters will be needed (the initial value and growth/decay rate for each of the basic models), so the formula placed in C3 will be “=$G$3*(1+$G$4)^A3+$G$5*(1+$G$6)^A3”, which will be spread down column C beside all the data values.  Set the initial-value parameters G3 and G5 to about 600 (half the first data value).  Set the growth-rate parameters G4 and G6 to different negative values (such as –10% and –30%) that make the model roughly match the data.  Then use Solver to minimize the sum of squared deviations in H12 by changing the G3:G6 range of parameters.  This produces the results below:
	1108.925

 Initial value 1

-47.40%

 Growth rate 1

227.0572

 Initial value 2

-5.11%

 Growth rate 2

30.6017

 Sum of squared dev.

1.428325

 Standard deviation


	[image: image10.emf]Best-fit two-exponential model (squares)
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Clearly, the sum-of-two-exponentials model fits this data much better than the one-exponential model.  The best-fit parameters show that the measured radioactivity is produced by a fast-decaying component (a decay rate of 47.4% per hour) that starts out producing 83% of the activity, as well as by a slower-decaying component (a decay rate of 5.1% per hour) that starts out producing 17% of the activity.  

	       Now that the parameters of the two components are known, the exponential model for each component can be graphed individually, showing how the slower-decay component becomes the main source of activity after about three hours.  
	[image: image11.emf]Two exponential components with differing decay rates
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If the model had not fit the data well, this would imply that there are more than two radioactive components, either in the initial mixture or because one or both of the components are decaying to a additional radio​isotope.  Such a situation would require a more sophisticated analysis to fully understand, but the analysis process above would still be enough to determine whether a two-radioisotope explanation is adequate.

If the oversimplified one-exponential model had been used, it could lead to some dangerous decisions, even though the values of that model were moderately close to the data over much of its range.  The danger is because one of the most important issues about radioisotopes is how long a radioactive sample needs to be shielded before it is safe.  The best-fit single-exponential model for this data has a decay rate of 30% per hour, which will predict about the true level of activity at 5 hours, but at 24 hours will predict an activity level that is over 300 times smaller than the actual one, since by that time the activity is almost completely due to the component whose decay rate is only 5.1% (99.99999% of the other component has already decayed by that time).  Even at 18 hours (the last data point), the actual activity is more than 50 times the level predicted by the single-exponential model.
Section 2:  Avoiding confounded parameters – don’t use two parameters to control the same thing


Models formed by adding two basic models together are very useful, but in some cases a problem arises because both models have parameters that control the same thing (e.g., vertical offset).  When this is true, there is not any “best-fit” solution for these parameters, since any combination of vertical-offset values that gives a good fit could be replaced by other values which add up to the same thing.  In such a situation, what values Solver will find for these “confounded” parameters depends unpredictably on their initial settings.


This problem can be avoided by eliminating one of the confounded parameters.  If the compound model is the sum of a linear model and a sinusoidal model, for example, the linear intercept parameter and the sinusoidal baseline parameter both control the vertical offset.  In this case, it would be best to leave out the sinusoidal baseline parameter (use only wavelength, amplitude, and phase), because the natural way to think about data of this kind is as a straight line with sinusoidal deviations.
	Example 3:  A series of monthly calibration measurements of the bias in pounds of an outdoor scale produces the data shown to the right.  An examination of the graph of the data (shown below) indicates that its pattern is a combination of a gradual multi-year trend (probably due to wear of some part) and a repeating seasonal variation (probably due to temperature variation).  Use a compound model combining a linear model with sinusoidal variation to [i] determine the annual rate of change shown by the multi-year trend and [ii] to predict the bias 8 months after the last data point shown.

[image: image12.emf]Measured scale bias (pounds), by month
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Solution:


The compound model should have the two linear parameters of intercept and slope, but it should use only three of the four sinusoidal parameters, since the average parameter is added on to the result in the same way as the intercept.  So the formula of the model is y = intercept + x * slope + amplitude*sin(2π*(x+phase)/wavelength), so C3 needs to be “=$G$3+A3*$G$4+$G$6*SIN(2*PI()*(A3+$G$7)/$G$5)”, which is to be spread down beside the data as usual.


Once the spreadsheet is set up, we can use Solver to minimize the sum of squared deviations by changing the five parameters G3:G7.  

When you have a lot of parameters, it becomes more important to start Solver with initial values that ensure that are reasonably correct, so that Solver does not get lost in its search for the best-fit values.  This is not difficult if you use the data+model graph for feedback, and make some simple estimates from the data.  There is no need to start with a close match – Solver will do that work – but you want to avoid situations where Solver tries a very incorrect value for a parameter like wavelength, for example.


In this case, it will work to use values such as 1.0 for the intercept, 12 for the wavelength (since the temperature variations should have a 12-month cycle), and about 0.1 for the amplitude (since the valley-to-peak variation is about 0.2.  An initial slope of zero is okay, since the true value is a small positive number, and an initial phase value of about 8 looks about right on the graph.
	Month

Bias

1

0.712

2

0.749

3

0.800

4

0.895

5

0.937

6

0.998

7

1.015

8

0.966

9

0.950

10

0.847

11

0.788

12

0.752

13

0.783

14

0.794

15

0.857

16

0.933

17

0.992

18

1.071

19

1.072

20

1.031

21

1.006

22

0.895

23

0.871

24

0.797

25

0.825

26

0.841

27

0.861

28

0.982

29

1.050

30

1.116

31

1.136



	Solver produces these results:
Line+Sinusoidal Parameters

0.837518

 Intercept

0.004593

 Slope

12.14912

 Wavelength

0.143756

 Amplitude

8.580468

 Phase offset

Goodness of fit of this model

0.006831

 Sum of squared dev.

0.016209

 Standard deviation

[image: image13.emf]Line + sine model (line) and data (circles)
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Answers:  The fitting results show that the multi-year trend in the bias is 0.004593 pounds per month (the linear slope parameter), which is about 0.055 pounds per year.  Evaluating the model at 39 months (8 months after the last data value) gives a prediction for bias at that time of about 0.945 pounds.  


Note that the predicted bias value at 39 months is lower than the bias shown in the last data value, indicating that between these times the seasonal variation is larger than the long-term upward trend.  Another interesting aspect of this problem is that simply fitting a linear model to the data would not have given good results; since the 2½-year pattern includes three upward-sloping segments and only two downward-sloping segments, a plain linear model would give a result more than 20% too large for the long-term trend.
	Confounded-parameter problems can usually be avoided by thinking about the meaning of each parameter in the context of the data.  If the information it conveys is already being supplied by an earlier parameter, leave it out.  In the example below, a three-stage process (with two transitions) can be modeled by adding two logistic models.  Since a logistic model has four parameters (rate, center, height, and floor), one might expect eight parameters in the compound model.  But are any of these parameters redundant?

[image: image14.emf]Milling machine depth of cut
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Example 4: The data to the right record the depth of the cut of a milling machine during a portion of a production run.  Fit an appropriate model to the data to make estimates of the time, to the nearest millisecond, of the midpoint of each transition.
Solution:


Step transitions can be modeled by logistic functions; for this data, the sum of two logistic functions would be suitable.  


The horizontal asymptotes in a logistic graph are controlled by the floor and height parameters.  But in this sum-of-logistics model, floor2 (the floor of the second logistic) will equal floor1+height1, and does not need a separate parameter in the model.

In this case, it appears that the model can be further simplified by using the same height and rate parameters for both transitions, leaving the model with five parameters: floor, height, rate, center1 ,and center2, (use cells G3–G7 for these).
	Secs
Depth
20.0

28.46

20.1

28.47

20.2

28.50

20.3

28.58

20.4

28.61

20.5

28.69

20.6

28.63

20.7

29.89

20.8

38.27

20.9

56.00

21.0

61.44

21.1

62.05

21.2

62.34

21.3

62.35

21.4

62.37

21.5

62.22

21.6

62.19

21.7

62.37

21.8

62.43

21.9

62.49

22.0

64.81

22.1

78.21

22.2

92.96

22.3

95.77

22.4

95.95

22.5

95.93

22.6

95.99

22.7

96.08

22.8

96.06

22.9

96.20

23.0

96.25




The model to be used is thus 
 y = floor + height / (1+0.018316^(rate*(x–center1))) + height / (1+0.018316^(rate*(x–center2)))
This means that the formula to be placed into C3 (and spread down beside the data) should be =$G$3+$G$4/(1+0.018316^($G$5*(A3-$G$6)))+$G$4/(1+0.018316^($G$5*(A3-$G$7)))
Set initial values for the parameters from the data, checking them by looking at the data+model graph.  In this case, the floor is about 30, the step height is about 30, and the transition centers are at roughly 21 and 22.  The rate is positive, so start with 1 (which the graph shows is too slow) and adjust it to 10.
	Answers:


The best-fit results produced by Solver are shown to the right.  The parameters relevant to the question asked are center1 and center2 , so the times of the middle of the two transitions are 20.837 seconds and 22.105 seconds.
	28.4643

 Floor

33.8087

 Height

5.8546

 Rate

20.8371
 Center 1

22.1047

 Center 2





An extreme case of confounding parameters can occur when the effect of all of the parameters in one of the models can be replicated by adjustments in the parameters of the other model.  In such a case, there is no need for a compound model.  Of the basic modeling functions we have discussed in this course, this situation arises when linear models and/or quadratic models are combined.  

The sum of two or more linear models can always be expressed as a single new linear model that will give exactly the same output.  The sum of two or more quadratic models, or the sum of linear and quadratic models, can be expressed as a single new quadratic model.  Similar combinations occur for other polynomial models, with the result matching the highest-order polynomial used in the sum. 
Section 3:  Composite models – Using different formulas for different parts of the graph


Compound models add two or more modeling functions together.  The other main way in which models are combined is to “compose” a new model by using different modeling formulas depending on what the input values are.  The graphs of such composite models will usually have a sharp break, in value or slope or both, at each point in the input range at which there is a switch from one function to another.
[image: image15.emf]Federal Income Tax (married couples, no children, standard deductions)
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Income taxes due are described by a composite model with a change in slope for each tax bracket.  
In this case each piece of the model is a straight line segment starting at the end of the previous one.

Each segment of a composite model can be built of any kind of modeling formula.  The model output can have abrupt jumps in value, although it is more usual for changes at the transition values to be in the slope, since few processes have big output changes for small input changes.  Sometimes the position of the transition between formulas is a parameter of the model, so that the fitting process lets the data tell you where the transition is.  In the common situation where the transition is at the intersection of two fitted formulas, the transition can usually be deduced algebraically by setting the two formulas equal to each other (using the fitted parameters as coefficients) and solving for the x and y of the crossing point.
Two main approaches are used to “composing” a composite model.  The simplest approach is to use each input value to evaluate two or more formulas, then pick the largest of the results to use as the output value.  The effect is to make a model whose graph follows the top of the graphs of each of the component formulas.  This can be implemented in a spreadsheet with the MAX function, whose value is equal to the largest of its arguments (e.g., the value of “=MAX(14,22,-30,5)” is 22) .  
The graph and table below show the output of a model formula that uses two linear formulas (y=3x+23 and y=7x+2) as arguments to the MAX function.  The solid circles are the output of the composite model that results from the MAX function, while the empty triangles and squares show the portions of the two linear formulas that are not used because the other formula is larger at that x value.
	x
y
0

23

1

26

2

29

3

32

4

35

5

38

6

44

7

51

8

58

9

65

10

72


	[image: image16.emf]Composite formula mode by using MAX function on two linear formulas
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	Example 5: 
     A cylindrical water tank drains through two outlets, one near the bottom of the tank and the other near the middle.  Each outlet pumps at a steady (but different) rate until the water drops below the opening to its outlet.  The dataset to the right shows the water depth measured in feet at one-minute intervals during drainage.  Based on this data, find the answer to these questions:
	Minutes

Depth
0

53.3

1

45.0

2

36.8

3

28.6

4

24.0

5

21.6

6

19.2

7

16.9

8

14.5
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	     [a] What percentage of the total pumping capacity is provided by the outlet at the bottom of the tank?

     [b] What is the depth of the tank at its upper outlet?
Solution:

     Steady drainage of a cylindrical tank is a linear process, so it should work to model this situation with two straight lines – one to match the part of the process where the tank is being emptied through both outputs (the left part of the data graph), and the other line for the part of the process where the tank is emptying only through the outlet at the bottom (the right part of the graph).  As the model to fit, we will use the MAX function with two linear formulas.

     This model will have four parameters: intercept1, slope1, intercept2, and slope2; if cells G3:G6 are used, the formula in C3 should be “=MAX($G$3+$G$4*A3,$G$5+$G$6*A3)” (this should be spread down beside the data as usual).
     Use a graph of the data to choose and check initial values for the parameters.  The intercept for the first segment is near 50, and its slope is roughly –10; the second segment has an intercept of roughly 30 (extend the points after the bend back to the y-axis), and the second slope is less steep, roughly –3 or so.

     [a] Since pumping capacity is proportional to the slope of the lines, the percentage requested in the problem can be computed from the ratio of slope2, which reflects the activity of the bottom pump, to slope1, which reflects the activity of both pumps together.  This ratio is 0.28797, so the bottom pump is 28.8% of total capacity.
Best-fit Solver results

53.27
 Intercept 1

-8.23
 Slope 1

33.46
 Intercept 2

-2.37
 Slope 2

     [b] To determine the height of the higher outlet, we need to know the location of the point at which the two lines cross.  This can be done with algebra by solving the equation that results from equating the two linear formulas to each other, using the best-fit numerical coefficients that were found with Solver.
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The same approach can be used with the MIN function, which evaluates to the lowest value among its arguments (e.g., the value of “=MIN(14,22,-30,5)” is –30), but in this case the graph of the resulting model follows the bottom of the graphs of the component formulas, rather than the top.

The other main approach to creating a composite function is to explicitly test the input x value and select between two different formulas based on whether the test is true or false.  This is done with the IF function, which uses the format IF(test_expression, formula_if_true, formula_if_false).  For example, the formula “=IF(A3<6,4*A3,A3^2)” will use the 4*A3 formula (evaluating to 20) if A3=5, but will use the A3^2 formula (evaluating to 49) if A3=7.  This approach is most useful when the test expression uses a model parameter that is also used in one or both of the formulas, since otherwise it is simpler to simply divide the data into several sections based on x values and to separately model each section.
Section 4:  Miscellaneous advanced modeling issues and topics for further study
	
Unnecessary parameters: The ability to add more parameters by adding basic models together raises the question of where to stop this process.  The additional parameters almost always enable the model to come closer to the data points, thus reducing the sum-of-squared-deviations figure – if the number of parameters is increased until there are as many parameters as data points, it is likely that the model can go exactly through every point.  However, such a model is usually not better than some simpler one at predicting other output values.

	
The way to assess this is to find the model that produces the minimum standard deviation.  Since the standard deviation is computed by an averaging process that increases the result when more parameters are used, using more parameters than are needed to follow the non-random trend of the data will result in a larger standard deviation.


A model that has more parameters than are needed is said to be over-fitted.  This can be especially misleading for some kinds of modeling formulas whose extrapolation behavior is poor, such as high-order polynomials, because it results in the model replicating some of the noise in a particular data set rather than extracting the repeatable aspects of the process being measured.  An example of an over-fitted model is show to the right.
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Multiple and local solutions:  Solver finds solutions by making small changes in each of the indicated parameters and keeping any changes that result in a smaller value for the goodness-of-fit indicator chosen (usually the sum-of-squared-deviations or the standard deviation).  This process is continued until none of the changes improves the quality of the fit, even for very small changes.  The search thus stops in a “valley” (actually more like the bottom of a bowl), where changing any parameter in any direction will make the fit worse.

Usually this process gives good model parameters even if the initial parameter values are quite different from the best-fit values (the search keeps moving downhill until it reaches the bottom of the bowl).  But for some functions the fitting process has more than one solution; in such cases, the solution that is found depends on the initial conditions (and to a lesser extent on the details of the search process).  If all the solutions are of equal quality, the search is said to have multiple solutions.  But it is sometimes possible to have a “local minimum” solution, in which an answer is found that is better than any other nearby parameters settings, but still is significantly larger than some other solution.

Splines: A spline is a complex type of composite function that is often used during mechanical design processes to create smoothly-varying curves that do not match a simple mathematical formula.  Splines break up the points along the desired path into overlapping groups, then fit modeling formulas to each group, with added provision to ensure that the slope of the curve changes gradually in the overlapping parts.  Although splines are now generated by complex software using advanced versions of techniques similar to those introduced in this course, they were originally made by inserting thin flexible pieces of wood between pegs placed along the desired path, with the path of the bent wood measured or traced to produce a natural-looking curve.

Stability of solutions: Since best-fit parameter values are often used to explain aspects of the situation that was measured, it is of interest to know how dependable they are.  How much will the best-fit parameters change if a new set of measurement (with new noise, as always) is taken?  One way to find out is to add a small amount of random noise to the data and then re-fit the model.  Doing this several times and observing the effects will provide information about the sensitivity of each parameter to noise.
It is possible to have parameters that are quite sensitive to noise even though the predictions of the model are much less sensitive.  This can occur when small changes in the data lead the fitting process to change two different parameters in ways that almost cancel out in the result of the prediction formula.  This is a milder version of the “confounding” that was discussed in Section 2 of this topic.




































































































































Change from 10%�to 15% at $33,150


















































Change from 0%�to 10% at $17,500
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