Matrix Notation

Notation used to denote elements in a matrix: a_{ij}

Two matrices are equal if
i) they have the same dimension
ii) corresponding elements are equal

Examples:

Operations with Matrices:

Addition/Subtraction

Only matrices with the same dimension can be combined. In either case the result is a matrix with the same dimension

Scalar Multiplication

Suppose k is a real number.

Example: Given $B = \begin{bmatrix} 4 & 0 & 6 \\ 1 & -1 & 0 \\ 2 & 9 & -2 \end{bmatrix}$ and $C = \begin{bmatrix} -2 & 1 & 20 \\ 1 & -3 & 0 \\ 0 & 10 & 3 \end{bmatrix}$,

Find the following:

(a) $B + C$.
(b) $2B - 3C$.
Matrix Multiplication

The product of an \(m \times n \) matrix \(A \) and a \(n \times p \) matrix \(B \), is the \(m \times p \) matrix \(AB \). To find the element \(a_{ij} \) in \(AB \), multiply each element in the \(i \)th row of \(A \) by the corresponding element in the \(j \)th column of \(B \). The sum of these products will be \(a_{ij} \).

Example: Given

\[
A = \begin{bmatrix}
0 & 5 \\
4 & 0 \\
-1 & -2 \\
3 & 6
\end{bmatrix}, \quad B = \begin{bmatrix}
4 & 0 & 6 \\
1 & -1 & 0 \\
2 & 9 & -2
\end{bmatrix}, \quad C = \begin{bmatrix}
-2 & 1 & 20 \\
1 & -3 & 0 \\
0 & 10 & 3
\end{bmatrix}
\]

\[
D = \begin{bmatrix}
-4 & 8 & -3 & 7 \\
3 & 0 & -2 & 9
\end{bmatrix} \quad \text{and} \quad E = \begin{bmatrix}
-3 & 0 \\
5 & 2
\end{bmatrix}
\]

Find the following products, if possible.

(a) \(A \cdot E \) \quad (b) \(B \cdot E \) \quad (c) \(B \cdot C \)

Applications

Example: Tuition Costs p 548 # 67

Example: Car Sales p 548 # 70

Example: A manufacturer produces three models of a product, which are shipped to two warehouses. The number of units \(i \) that are shipped to warehouse \(j \) is represented by \(a_{ij} \) in matrix \(A \) below. The price per unit is represented by matrix \(B \). Find the product \(BA \) and interpret the results.

\[
A = \begin{bmatrix}
1000 & 3000 \\
2000 & 4000 \\
5000 & 8000
\end{bmatrix} \quad B = \begin{bmatrix}
$25 & $20 & $32
\end{bmatrix}
\]
Section 6.6 Inverses of Matrices

For an interesting understanding of matrix inverses, please read the computer graphics application which begins this section.

The Identity Matrix

The \(n \times n \) identity matrix, denoted by \(I_n \)

Matrix Inverses:

Suppose \(A \) is an \(n \times n \) matrix. If the inverse of \(A \), denoted \(A^{-1} \) exists, then it is the \(n \times n \) matrix satisfying \(A \cdot A^{-1} = A^{-1} \cdot A = I_n \)

If \(A^{-1} \) exists, then it is called invertible or nonsingular.
If \(A \) does not have an inverse, then it is singular

Example: Verify that \(A \) and \(B \) are inverses if

\[
A = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}
\]

Finding an inverse symbolically

Example: Find \(A^{-1} \) if \(A = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \)

Start by forming the 3 x 6 augmented matrix:

Next, use row operations to obtain \(I_3 \) on the left side of the augmented matrix

The right side is the inverse.

Check your work by showing that the right side matrix satisfies \(A \cdot A^{-1} = A^{-1} \cdot A = I_n \)

Example: Find \(A^{-1} \) for the 2 x 2 matrix \(A = \begin{bmatrix} 4 & 3 \\ -3 & -2 \end{bmatrix} \)
Solving Linear Systems with Inverses and Matrix Equations

A matrix equation can be used to represent a system of linear equations. Consider the following system:

\[
\begin{align*}
2x + y - 3z &= 1 \\
y - 4z &= 6 \\
-3x + y + 5z &= 4
\end{align*}
\]

Let \(A = \begin{bmatrix} 2 & 1 & -3 \\ 0 & 1 & -4 \\ -3 & 1 & 5 \end{bmatrix} \) be the coefficient matrix.

Let \(X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \) be the variable matrix and \(B = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix} \) be the constant matrix.

Find the product \(AX \).

The matrix equation \(AX = B \) is equivalent to the original system. Any linear system can be represented by a matrix equation.

Solving for \(X \) in this matrix equation should give us the solution to the system.

Special note: Since matrix multiplication is not commutative, you the student must remember to multiply each side of the matrix equation on the left by \(A^{-1} \). In general \(A^{-1} \cdot B \neq B \cdot A^{-1} \).

Example: Solve the following system using a matrix equation.

\[
\begin{align*}
x - 3y &= 2 \\
2x + 4y &= -6
\end{align*}
\]
Example: Solve the following system using a matrix equation.

\[
\begin{align*}
 x + y - z &= 0 \\
 2x - y - z &= 2 \\
 -x + y + z &= 4
\end{align*}
\]

Applications

Example: p 561 # 71