College Algebra Day 5

Section 2.4 Linear Inequalities

Form:

Linear Inequalities and Functions:

The meaning of $f(x) \geq 0$ $f(x) \leq 0$ with respect to the graph of f.

Properties of Inequalities

Interval Notation

Example: Express the following using interval notation.

(a) $x \geq -3$ (b) $2 > x$ (c) $x < -4$ or $x \geq 1$ (d) $\{x | 5 \leq x \leq 12\}$

Solving Linear Inequalities Symbolically

Example: Solve the following inequalities, expressing your answer in set-builder and interval notation.

(a) $2x + 1 < \frac{2 - x}{-4}$

(b) $-2(2 - 3x) \geq 8 - 2(x - 2)$
Graphical Solutions:

Example: Solve the linear inequality by graphing
\[1.238x + 0.998 \leq 1.23(3.987 - 2.1x)\]

Intersection of Graphs x-intercept method

Compound Inequalities

Example: Solve \[\frac{3}{4} \leq \frac{3-t}{2} < 1\]. Write the solution in interval notation

Applications:

Example: The number of species of fish in the Thames River in England from 1967 to 1978 can be modeled by the function \(f(x) = 6.15x - 12,059 \), where \(x \) is the year

(a) Estimate the year when the number of species first exceeded 70.

(b) Estimate the years when the number of species was between 50 and 100.