PRACTICE PROBLEM 1

The doctor orders Phenergan (Promethazine) PR 12.5 mg every 6 hours as needed for nausea. Calculate the dose for a child who weighs 40 lbs and is 38 inches tall using Nomogram Method.

First determine the BSA for this child.
(answer $0.71 \mathrm{M}^{2}$)
\qquad M^{2}

Now identify the adult dose.
answer of 12.5
Adult dose = \qquad mg

Now that you know what the child's BSA is and the adult dose, you can plug it into the formula

$$
\frac{\text { Child's BSA in } \mathrm{M}^{2} \mathrm{x}}{1.73 \mathrm{M}^{2}} \text { Adult Dosage }
$$

answer of 5.1 mg
\qquad mg
"The Nomogram reading for this child is $0.71 \mathrm{M}^{2}$. Now plug it into the formula:
$\frac{0.71 \mathrm{M}^{z} \times 12.5 \mathrm{mg}}{1.73 \mathrm{M}^{z}-}=\frac{195 \mathrm{mg}}{1.73}=5.13 \mathrm{mg}=5.1 \mathrm{mg}$
Because the dose is between 1 and 10 mg , you will round the answer to the nearest tenths place. Therefore, the dose for this child will be 5.1 mg of Pherergan (Promethazine) based on the Nomogram Method."

PRACTICE PROBLEM 2

The doctor orders Erythromycin 250 mg PO four times a day. Calculate the dose for a child who weighs 22lbs and is 30 inches tall using the Nomogram Method.

First determine the BSA for this child.
(answer $0.29 \mathrm{M}^{2}$)
\qquad M^{2}
child's weight (22 lbs) and height (30 in) and where it crosses the BSA column at 0.29 M^{2}.

Now identify the adult dose.
answer of 250
Adult dose = \qquad mg
"The adult dose can also be the doctor's order. Therefore, the adult dose is 250 mg ."
Now that you know what the child's BSA is and the adult dose, you can plug it into the formula

$$
\frac{\text { Child's BSA in } \mathrm{M}^{2} \mathrm{x}}{1.73 \mathrm{M}^{2}} \text { Adult Dosage }
$$

answer of 42 mg
\qquad mg
"The Nomogram reading for this child is $0.29 \mathrm{M}^{2}$. Now plug it into the formula:
$\underline{0.29 \mathrm{M}^{2} \times 250 \mathrm{mg}}=\underline{72.5 \mathrm{mg}}=41.9 \mathrm{mg}=42 \mathrm{mg}$
$1.73 \mathrm{M}^{2}$ - 1.73
Because the dose is greater than 10 mg , you will round the answer to the nearest whole number. Therefore, the dose for this child will be 42 mg of Erythromycin based on the Nomogram Method."

PRACTICE PROBLEM 3

The doctor orders an adult dose of Ampicillin 1 g q 8 hr . Calculate the dose for a child who weighs 35 lbs and is 45 inches tall using the Nomogram Method.

First determine the BSA for this child.
(answer $0.7 \mathrm{M}^{2}$)
\qquad M^{2}
"The Nomogram reading for this child is $0.7 \mathrm{M}^{2}$." Nomogram should pop up indicating the child's weight (35 lbs) and height (45 in) and where it crosses the BSA column at $0.7 \mathrm{M}^{2}$.

Now identify the adult dose.
answer is 1000
Adult dose = \qquad mg
"The adult dose can also be the doctor’s order. Therefore, the adult dose is 1 g or 1000 mg."

Now that you know what the child's BSA is and the adult dose, you can plug it into the formula

$$
\frac{\text { Child's BSA in } \mathrm{M}^{2} \mathrm{x} \text { Adult Dosage }}{1.73 \mathrm{M}^{2}}
$$

answer is 405 mg
\qquad mg
"The Nomogram reading for this child is $0.7 \mathrm{M}^{2}$. Now plug it into the formula: $\underline{0.7 \mathrm{M}^{2} \times 1 \mathrm{~g}} \underset{1.73 \mathrm{~A}^{2}}{ } \times \underline{1000 \mathrm{mg}}=\underline{700 \mathrm{mg}}=404.6 \mathrm{mg}=405 \mathrm{mg}$
$1.73 \mathrm{M}^{2} \quad 1 \mathrm{~g} \quad 1.73$
Because the dose is greater than 10 mg , you will round the answer to the nearest whole number. Therefore, the dose for this child will be 406 mg of Ampicillin based on the Nomogram Method."

PRACTICE PROBLEM 4

The doctor orders Benedryl (Diphenhydramine) 50 mg PO every 6 hours PRN. Calculate the dose for a 4 year old child using Fried's Rule.

First determine the child's age in months.
answer is 48
\qquad months
"The child is 4 years old, therefore --- 4 years x 12 months $=48$ months 1 yeaf

Now identify the adult dose.
answer is 50
Adult dose = \qquad mg
"The adult dose can also be the doctor’s order. Therefore, the adult dose is 50 mg ."
Now that you know the child's age in months and the adult dose, you can plug it into the formula:

Pediatric dose= child's age in months x Adult Dose 150 months
answer is 405 mg
\qquad mg

Remember, multiply the child's age in months by the adult dose and divide by 150 months.
"Using Fried’s Rule, the child dose should be 16 mg ."
48 months $\mathrm{x} 50 \mathrm{mg}=\underline{2400 \mathrm{mg}}=16 \mathrm{mg}$ of Benedryl (Diphenhydramine)
150 months 150

PRACTICE PROBLEM 5

The doctor orders Morphine 2 mg IV every 4 hours PRN pain. Calculate the dose for a $2 ½$ year old child using Fried's Rule.

First determine the child's age in months.
answer is 30
\qquad months

Remember, there are 12 months in one year."
"The child is $2 \underline{1} 2$ years old, therefore
2.5 years x 12 months $=30$ months

1 year
Now identify the adult dose.
answer is 2
Adult dose = \qquad mg

Remember, the adult dose can also be the doctor's order."
"The adult dose can also be the doctor's order. Therefore, the adult dose is 2 mg ."
Now that you know the child's age in months and the adult dose, you can plug it into the formula:

Pediatric dose $=$ child's age in months x Adult Dose
150 months
answer is 405 mg
\qquad mg
Remember, multiply the child's age in months by the adult dose and divide by 150 months.
"Using Fried’s Rule, the child dose should be 0.4 mg ." $\frac{30 \text { months } x 2 \mathrm{mg}}{150 \text { months }}=\frac{60 \mathrm{mg}}{150}=0.4 \mathrm{mg}$ of Morphine

PRACTICE PROBLEM 6

The doctor orders Tylenol (Acetaminophen) 500 mg PO PRN pain. Calculate the dose for a 7 year old child using Young's Rule.
First identify the child's age in years.
answer is 7
\qquad years
The question states the child is 7 years old.
Now identify the adult dose.
answer is 500
Adult dose = \qquad mg
"Try again. Remember, the adult dose can also be the doctor's order."
"The adult dose can also be the doctor's order. Therefore, the adult dose is 500 mg ."
Now that you know the child's age in years and the adult dose, you can plug it into the formula:

$$
\text { Pediatric dose }=\frac{\text { Child's age in years }}{\text { Child's age in years }+12 \text { years }} \quad \mathrm{x} \text { Adult Dose }
$$

answer is $184 \mathbf{~ m g}$
\qquad mg
"Using Young's Rule, the child dose should be 184mg."

$$
\frac{7 \text { years }}{7 \text { years }+12 \text { years }} \times 500 \mathrm{mg}=\frac{7}{19} \times 500 \mathrm{mg}=184.2 \mathrm{mg}=184 \mathrm{mg}
$$

PRACTICE PROBLEM 7

The doctor orders an adult dose of 2 million units of Penicillin G potassium per day divided into 4 doses. Calculate the dose per day for a 10 year old child using Young’s Rule.

First identify the child's age in years.
answer is 10
\qquad years
"The question states the child is 10 years old.
Now identify the adult dose.
answer is 2
Adult dose = \qquad million units
"The question states the adult dose is 2 million units.
Now that you know the child's age in years and the adult dose, you can plug it into the formula:

$$
\text { Pediatric dose }=\frac{\text { Child's age in years }}{\text { Child's age in years }+12 \text { years }} \quad \mathrm{x} \text { Adult Dose }
$$

answer is $\mathbf{9 0 0 , 0 0 0}$ or $\mathbf{9 0 9 , 0 9 1}$
\qquad units
"Using Young’s Rule, the child dose should be 909,091 units."

$$
10 \text { years_ } \times 2,000,000 \text { units }=\underline{10} \times 2,000,000 \text { units }
$$

$$
10 \text { years }+12 \text { years }
$$

$$
=909,090.91 \text { units }=909,091 \text { units }
$$

PRACTICE PROBLEM 8

The doctor orders an adult dose of Dilantin (Phenytoin) 100 mg tid. Calculate the dose for a child weighing 25 lbs using Clark’s Rule.

First identify the child's weight in pounds.
answer is 25
\qquad lbs
"The question states the child weighs 25 lbs.
Box 2
Now identify the adult dose.
answer is $\mathbf{1 0 0}$
Adult dose = \qquad mg
"The question states the adult dose is 100 mg .
Now that you know the child's weight and the adult dose, you can plug it into the formula:

Pediatric dose= Child's weight in lbs x Adult Dose 150 lbs
answer is 17
\qquad mg
"Using Clark’s Rule, the child dose should be 17 mg ."
$\underline{25 \mathrm{lbs} \times 100 \mathrm{mg}=\underline{2500 \mathrm{mg}}=16.7 \mathrm{mg}=17 \mathrm{mg}}$
$150 \mathrm{lbs} \quad 150$

PRACTICE PROBLEM 9

The doctor orders an adult dose of Amoxicillin 500 mg q 8 hours. Calculate the dose for a child weighing 18 lbs using Clark’s Rule.

First identify the child's weight in pounds.
answer is 18
\qquad lbs
"The question states the child weighs 18 lbs.

Now identify the adult dose.
answer is 500
Adult dose = \qquad mg
"The question states the adult dose is 500 mg .
Now that you know the child's weight and the adult dose, you can plug it into the formula:

Pediatric dose= Child's weight in lbs x Adult Dose 150 lbs
answer is 60
\qquad mg
"Try again. Remember, multiply the child’s weight in lbs by the adult dose and divide by 150 lbs."
"Using Clark’s Rule, the child dose should be 60 mg ."
$\underline{18 \mathrm{lbs} \times 500 \mathrm{mg}}=\underline{9000 \mathrm{mg}}=160 \mathrm{mg}$
$150 \mathrm{bs}-150$

PRACTICE PROBLEM 10

The healthcare provider is caring for a pediatric patient that weighs 15 lbs and has $2^{\text {nd }}$ degree burns covering the back torso. The doctor orders fluid resuscitation for this patient. Calculate the correct amount of fluid for the 16 hours following the first 8 hours of fluid replacement.

First identify the TBSA burned \% for the patient.
in answer is 18
\qquad \%
"According to the Lund-Browder Chart, the back torso is 18\%"
Now identify the child's weight in kilograms (kg).
answer is 6.82
\qquad kg
"Try again. Remember the weight should be in kilograms, not pounds"
"The question states the child weighs 15 lbs . You will need to convert it to kg using the conversion $1 \mathrm{~kg}=2.2 \mathrm{lbs}$.
$\mathrm{kg}=\frac{15 \mathrm{bs}}{1} \times \frac{1 \mathrm{~kg}}{2.2 \mathrm{bs}}=6.82 \mathrm{~kg}$

Now that you know the TBSA burned \% and the child's weight in kg, you can plug into the formula:

Fluid Requirements $=$ TBSA burned $(\%) \times$ Weight $(\mathrm{kg}) \times \frac{4 \mathrm{~mL}}{1 \mathrm{~kg}}(\mathrm{RL})$
answer is 491
\qquad mL
"Using Parkland’s formula you should calculate the fluid requirements to be 491 mL .
Fluid Requirements $=18 \% \times 6.82 \mathrm{~kg} \times \frac{4 \mathrm{~mL}}{1 \mathrm{~kg}}=18 \times 6.82 \times 4 \mathrm{~mL}=491.04 \mathrm{~mL}=491 \mathrm{~mL}$ 1 kg

Now you will need to determine how much to administer in the first 8 hours.
answer is 246
\qquad mL should be administer during the $1^{\text {st }} 8$ hours
"During the $1^{\text {st }} 8$ hours $1 / 2$ of the fluid should be administered.
$491 \mathrm{~mL}=245.5 \mathrm{~mL}=246 \mathrm{~mL}$ over the first 8 hours
2

Next you will need to determine how much to administer over the next 16 hours.
answer is 245
\qquad mL to be administered over the 16 hours
"During the next 16 hours the $2^{\text {nd }}$ half of volume is to be administered.
Total Volume Required - Volume Administered $1^{\text {st }} 8$ hours $491 \mathrm{~mL}-246 \mathrm{~mL}=245 \mathrm{~mL}$

PRACTICE PROBLEM 11

The healthcare provider is caring for a pediatric patient that weighs 25 lb and has $2^{\text {nd }}$ degree burns covering the right arm and right leg. The doctor orders fluid resuscitation for this patient. Calculate the correct amount of fluid for the first 8 hours according to Parkland's burn formula.

First identify the TBSA burned \% for the patient.
answer is 23
\qquad \%
"Try again. Remember the patient is burned on two parts of their body"
"According to the Lund-Browder Chart, the right arm is 9% and the right leg is 14%.
Therefore, the TBSA is $9 \%+14 \%=23 \%$ "
Now identify the child's weight in kilograms (kg).
answer is $\mathbf{1 1 . 3 6}$
\qquad kg
"Try again. Remember the weight should be in kilograms, not pounds"
"The question states the child weighs 25 lbs . You will need to convert it to kg using the conversion $1 \mathrm{~kg}=2.2 \mathrm{lbs}$.
$\mathrm{kg}=\frac{25 \mathrm{lbs}}{1} \times \frac{1 \mathrm{~kg}}{2.2 \mathrm{lbs}}=11.36 \mathrm{~kg}$
Now that you know the TBSA burned \% and the child's weight in kg, you can plug into the formula:

Fluid Requirements $=$ TBSA burned $(\%) \times$ Weight $(\mathrm{kg}) \times \frac{4 \mathrm{~mL}}{1 \mathrm{~kg}}(\mathrm{RL})$
answer is 1045
\qquad mL
"Using Parkland’s formula you should calculate the fluid requirements to be 1045 mL .
Fluid Requirements $=23 \% \times 11.36 \mathrm{~kg} \times 4 \mathrm{~mL}=23 \times 11.36 \times 4 \mathrm{~mL}=1045.12 \mathrm{~mL}=1045 \mathrm{~mL}$ 1 kg

Now you will need to determine how much to administer in the first 8 hours.
answer is 523
\qquad mL should be administer during the $1^{\text {st }} 8$ hours
"During the $1^{\text {st }} 8$ hours $1 / 2$ of the fluid should be administered.
$1045 \mathrm{~mL}=522.5 \mathrm{~mL}=523 \mathrm{~mL}$ over the first 8 hours

PRACTICE PROBLEM 12

The healthcare provider is caring for a pediatric patient that weighs 40 lbs and has $2^{\text {nd }}$ degree burns covering the legs bilaterally. The doctor orders fluid resuscitation for this patient. Calculate the correct amount of fluid for the first 24 hours post-burn according to Parkland's burn formula providing the overall amount of fluid needed.

First identify the TBSA burned \% for the patient.
answer is 28
\qquad \%
"Try again. Remember the patient is burned on two parts of their body" "According to the Lund-Browder Chart, each leg is 14%.
Therefore, the TBSA is $14 \%+14 \%=28 \%$ "
Now identify the child's weight in kilograms (kg).
answer is 18.18
\qquad kg
"Try again. Remember the weight should be in kilograms, not pounds"
"The question states the child weighs 40 lbs . You will need to convert it to kg using the conversion $1 \mathrm{~kg}=2.2 \mathrm{lbs}$.

$$
\mathrm{kg}=\frac{40 \mathrm{lbs}}{1} \times \frac{1 \mathrm{~kg}}{2.2 \mathrm{bs}}=18.18 \mathrm{~kg}
$$

Now that you know the TBSA burned \% and the child's weight in kg, you can plug into the formula:

$$
\text { Fluid Requirements }=\text { TBSA burned (\%) x Weight }(\mathrm{kg}) \times \frac{4 \mathrm{~mL}}{1 \mathrm{~kg}}(\mathrm{RL})
$$

answer is 2036
\qquad mL
"Using Parkland’s formula you should calculate the fluid requirements to be 1045 mL .
Fluid Requirements $=28 \% \times 18.18 \mathrm{~kg} \times \underline{\mathrm{mL}}=28 \times 18.18 \times 4 \mathrm{~mL}=2036.16 \mathrm{~mL}=2036 \mathrm{~mL}$ 1 kg

