Human Anatomy & Physiology General

Differences between anatomy and physiology: **anatomy** = structure[greek: 'to cut up'] **physiology** = function

Anatomy

the study of parts and their interrelationships how the body is organized provides a standardized language eg "stomach" means different things to different people

Physiology

is the study of biological functions cause/effect interactions

More conceptual approach, interactions stressed

Relationship between anatomy and physiology

What are you?

A collection of carefully arranged atoms and molecules
A conglomeration of trillions of cells (75 Trillion)
Dozens of tissues and organs
8-10 major organ systems

Life is very complex must simplify to understand but lose something in the translation

How can we organize and study such complex processes?

Use *models* to understand complex processes

Some examples of models in physiology:

1. Levels of structural organization:

[Hierarchy of complexity]

matter, energy and their interactions can be applied at many levels in biological systems

moving up scale each level is more complex than one below it Anatomy & Physiology: Introduction & History, Ziser, 2003

each level includes all those below it new properties emerge from each level in terms of energy, each unit is more unstable than the one below it atoms -smallest structural units of matter (protons, neutrons, electrons) molecules - interaction of atoms to form compounds organelles – specialized components of cells performing specific cellular functions cells - basic unit of life tissues – groups of cells carrying out a specific function organs - groups of organs performing given functions organ systems – group of interacting organs organism – total functioning unit [population – association of same species living in same habitat] [community – popyulations osf several different species living in same place] [ecosystem – highest level of biological organization] most complex environment and community and all interactions]

Learn different things by studying at different levels:

eg stomach digests food, ulcers tissues/cells mucous cells, endocrine cells etc chemicals enzymes, hormones,

Each level has emergent properties

2. Major Organ Systems

How does your body work? chemical reactions To maintain yourself you must continually replenish

nutrients

 \rightarrow and this requires **energ**y

Greater size \rightarrow greater complexity

 \rightarrow greater efficiency

need "organs and organ systems" to coordinate and control all this activity

What Is Life?

<u>What is life</u>

a highly organized interaction of matter and energy

can't define in one sentence

must consider several **properties of life** or life functions:

each property taken individually is NOT unique to living things

many nonliving things do one or more of them eg. viruses don't quite fit

Properties of Life

1. maintaining boundaries:

-internal versus external environment

- 2. movement
- 3. responsiveness

-functions are regulated within and between cells

- 4. assimilation & digestion
- 5. metabolism

-anabolism & catabolism

- 6. excretion
- 7. reproduction

-survival of genetic information

8. growth

Survival needs:

1. nutrients

-solids, liquids, gasses

2. gasseous oxygen, O2

(is actually a nutrient)

needed for energy reactions in cells

3. water

solvent reactant

- 4. temperature range near 37° [~0° 100°] need liquid water proteins (enzymes) sensitive to temp
- 5. atmospheric pressure near 760mm Hg

gas exchange

pressure is equivalent to weight of air: a room 12x15x9 ft holds about 170 lbs of air

air pressure at sea level: about 14 lbs per square inch; winds produce lots of force

lowest atm humans can survive is about 1/5th of an atmosphere;

would become starved for oxygen if pressure were much lower; some bacteria can survive in "vacuum packed" foods

not enough oxygen gas at low pressures high pressures cause implosion

6. gravity

space science – gravity is essential for normal bone and muscle maintenance and cardiovascular fitness

Homeostasis

Homeostasis:

ability to maintain a constant internal environment regardless of fluctuations in the external environment \rightarrow boundaries needed

Requires:

receptor \rightarrow control center \rightarrow effectors

Negative Feedback

Positive Feedback & Homeostatic imbalances