Excretory Physiology

Urine production and eliminations are one of the most important mechanisms of body homeostasis
 → composition of blood is determined more by kidney function than by diet

all body systems are directly or indirectly affected by kidney function

kidney function is closely tied to circulatory system

typically referred to as “excretory system”

excretory wastes = metabolic wastes
 → chemicals & toxins produced by cells during metabolism

but we have several organs that serve an **excretory function** other than kidneys:
 1. **kidneys**
 2. **skin**
 sweat glands rid body of water, minerals, some nitrogenous wastes (ammonia)
 3. **lungs**
 rid body of CO2 from energy metabolism of cells
 4. **intestine**
 in addition to getting rid of undigested food residue
 feces also contains some metabolic wastes as well;
 bile pigments, salts, calcium, some toxins

Functions of Urinary System:
 1. removal of metabolic wastes
 2. elimination of toxins
 3. elimination of excess nutrients
 4. elimination of excess hormones
 5. regulation of fluid volume
 6. regulation of electrolytes
 7. regulation of acid base balance
 8. regulation of blood volume and pressure
 9. erythropoiesis
 10. calcium absorption

Nephron

nephron = functional units of kidneys

 each kidney is composed of over 1 million nephrons
two basic parts:

nephric tubule
- microscopic, highly convoluted tubule
- associated **blood supply**

Nephric Tubule

the nephric tubule is organized into several discrete structures

Bowman’s Capsule
- cup shaped mouth of nephron
- usually in cortex

Proximal Convoluted Tubule
- attached to Bowman’s Capsule
- highly coiled (convoluted)
- inner surface contains microvilli

Loop of Henle
- large loop consisting of:
 - descending limb &
 - ascending limb
- extends down into medulla

Distal Convoluted Tubule
- appears similar to PCT

Collecting Tubule
- many DCT’s drain into one collecting tubule
- bundles of collecting tubules = **pyramids**

Blood Supply

kidneys are highly vascularized

every minute, 1200 ml/min of blood flows through kidneys

\[\rightarrow = \frac{1}{5} \text{th of cardiac output} \]

- 45 gallons/day
- all blood ~60x’s/day

Glomerulus
- dense capillary bed
- formed by afferent arteriole
- inside Bowman’s capsule

Bowman’s Capsule + Glomerulus = Renal Corpuscle
Efferent Arteriole
blood leaves glomerulus via efferent arteriole
[\rightarrow \text{artery} \rightarrow \text{capillary bed} \rightarrow \text{artery}]

Peritubular Capillaries
efferent arteriole divides into another capillary bed
surrounds the rest of the nephric tubule
(PCT-LH-DCT-CT)

Urinary Physiology

urine formation in nephrons occurs by:
1. filtration
2. reabsorption
3. secretion

1. Filtration

occurs in renal corpuscle:
Glomerulus \rightarrow \text{Bowmans Capsule}

water, salts, small molecules and wastes are filtered out of blood capillaries of glomerulus:

fenestrated capillaries
\rightarrow \text{act like sieve}

have higher filtration pressure than other capillaries of body

afferent arteriole is larger than efferent arteriole
\rightarrow \text{increases pressure in glomerulus}
presssure \sim 45\text{mmHg}
(vs 35 \text{mmHg} in most capillaries)

not all water leaks out, some is retained since proteins and solutes that remain in blood attract water by osmosis
(water follows salt)

if blood pressure is reduced
\rightarrow \text{urine formation slows down}

kidneys can maintain a fairly constant filtration rate by:
1. **renal autoregulation**
kidney adjusts its own resistance to blood flow despite changes in systemic blood pressure by constricting and dilating local arterioles
 = autoregulation

2. **renin-angiotensin system**
mainly controls systemic blood pressure in emergencies but will also increase pressure in glomerular capillaries
renin is secreted by cells in walls of DCT (juxtaglomerular cells) in response to:
 - decreased BP: below 80 mmHg
eg. hemorrhage, dehydration
direct sympathetic stimulation
renin activates angiotensin (plasma protein)
angiotensin causes vasoconstriction of arterioles throughout the body
 → raises blood pressure

3. **local chemicals**
some chemicals secreted by kidney have local effect on blood vessels
 - eg. prostaglandins (tissue hormones)
 → some vasodilators
 → some vasoconstrictors
 - eg. NO → vasodilator
 - eg. kallikrein (renal enzyme) → vasodilator
 - eg. adenosine
 - eg. endothelin

 Sympathetic stimuli can override the above:
 - renal autoregulation can be overridden by emergency or stress
 - sympathetic fibers trigger strong constriction of afferent arterioles
 - shunts more blood to heart, brain, muscles

 filtrate is essentially the same composition as plasma without formed elements or proteins
solutes (filtrate) enter Bowman’s capsule

2. Tubular Reabsorption

urine is not the same composition as this filtrate
needed nutrients are conserved
wastes and toxins are eliminated
blood levels of fluids, salts, acidity etc are actively regulated

reabsorption is more selective
occurs all along nephric tubule
overall, ~99% of glomerular filtrate gets reabsorbed
only ~1% of original filtrate actually leaves the body as urine

<table>
<thead>
<tr>
<th></th>
<th>Plasma</th>
<th>Filtrate</th>
<th>Reabsorbed</th>
<th>Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amount</td>
<td>%</td>
</tr>
<tr>
<td>Proteins</td>
<td>8,000</td>
<td>15</td>
<td>15</td>
<td>100.0%</td>
</tr>
<tr>
<td>Glucose</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>100.0%</td>
</tr>
<tr>
<td>Salts</td>
<td>1,498</td>
<td>1,498</td>
<td>1,486</td>
<td>99.1%</td>
</tr>
<tr>
<td>Water</td>
<td>180,000</td>
<td>180,000</td>
<td>178,500</td>
<td>99.2%</td>
</tr>
<tr>
<td>Urea</td>
<td>53</td>
<td>53</td>
<td>28</td>
<td>52.8%</td>
</tr>
<tr>
<td>Uric Acid</td>
<td>8.5</td>
<td>8.5</td>
<td>7.7</td>
<td>90.0%</td>
</tr>
<tr>
<td>Creatinine</td>
<td>1.4</td>
<td>1.4</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
</tbody>
</table>

different substances are reabsorbed back into blood from different parts of tubule:

Proximal Convoluted Tubule
~80% of materials to be reabsorbed are reabsorbed in PCT
cells lining PCT have microvilli more mitochondria
all small proteins, glucose, amino acids are reabsorbed
most water, most salts are reabsorbed some wastes

Loop of Henle
additional Cl⁺ and Na⁺ ions are reabsorbed by active transport
countercurrent mechanism:
high salt conc is maintained in medulla around loop
ascending limb is impermeable to water
creates high conc of salts

Distal Convoluted Tubule & Collecting Tubule

high salt conc around nephric tubule causes water reabsorption in
DCT and CT
both salt and water reabsorption is partially controlled by
hormones:

- Na\(^+\) & K\(^+\) by aldosterone
- H\(_2\)O by ADH & aldosterone (indirectly)

Aldosterone:

- secretion controlled by K\(^+\) & Na\(^+\) ion concentrations in tissue fluids
- also affect reabsorption of water
tied to renin secretion
diuretics tend to
- increase Na\(^+\) reabsorption
- and increase K\(^+\) loss

AntiDiuretic Hormone:

- No ADH \(\rightarrow\) tubules are practically impermeable to water \(\rightarrow\) release hypotonic urine
- with ADH \(\rightarrow\) tubules are permeable to water
 - osmosis causes water reabsorption
 - \(\rightarrow\) release hypertonic urine

3. **Tubular Secretion**

- cells of DCT and CT can secrete some substances
 - esp K\(^+\) and H\(^+\)
 - also NH\(_4\) and
 - some drugs (eg. penecillin)

 - can be active or passive processes

 - usually urine is slightly acidic
 - normal diet produces more acid than alkaline waste products

Renal Clearance Rate

- the concentration of wastes in blood leaving kidneys (renal vein) is usually lower than their conc in blood entering kidneys (renal artery)
 - \(\rightarrow\) blood is cleared of wastes

- can estimate filtration rate of kidneys
need chemical that is filtered but not reabsorbed
eg. creatinine (but some is secreted too)
eg. inulin

measure how much of a known amount appears in urine then

\[\text{Glomerular Filtration Rate} = \text{Renal Clearance Rate} \]

Average Renal Clearance Rate
for most substances is \(~20\%\)\n\[\rightarrow \text{ie. \sim20\% of materials in renal blood are filtered and not reabsorbed/transit} \]

requires many passes thru kidneys to completely rid blood of something

Reabsorption & Secretion of Specific Nutrients

1. **Glucose**
easily filtered
requires energy to reabsorb
minimum amount of glucose in plasma to cause glucose to appear in urine
\[= \text{renal plasma threshold} \]
\[= 180-200 \text{ mg/100 ml} \]

glycosuria/hyperglycemia
\[\rightarrow \text{plasma glucose >200 mg/100ml} \]

2. **Amino Acids**
all require carriers for active transport
presence in urine may be due to:
excess amounts in blood
missing or defective carriers

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Disease</th>
<th>Cause of Disease</th>
<th>Effects of Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>cystine</td>
<td>Cystinuria</td>
<td>defective cystine carriers</td>
<td>kidney stones</td>
</tr>
<tr>
<td>tryptophane</td>
<td>Hartnup disease</td>
<td>defective tryptophane carriers</td>
<td>cells deficient in NAD and NADP</td>
</tr>
<tr>
<td>methionine</td>
<td>Homocystinuria</td>
<td>enzyme defect causes buildup of this intermediate product</td>
<td>speech defects, mental retardation</td>
</tr>
<tr>
<td>phenylalanine</td>
<td>Phenylketonuria</td>
<td>enzyme defect causes buildup of this intermediate product</td>
<td>severe mental retardation</td>
</tr>
</tbody>
</table>
3. **Sodium**

90% of filtered sodium is reabsorbed in PCT
additional 10% may be absorbed in LH due to effects of Aldosterone:
- without aldosterone
 - → 8% of rest is reabsorbed
 - → 2% is lost in urine (~30g/d)
- with aldosterone
 - → all 10% is reabsorbed
 - → urine has 0 sodium in it

4. **Potassium**

90% of filtered potassium is reabsorbed in PCT

high blood [K⁺]:
- may occur in metabolic acidosis
- can cause cardiac arrhythmias

low blood [K⁺]:
- can cause arrhythmias, muscle cramps

additional 10% may be absorbed in LH due to effects of Aldosterone:
- without aldosterone
 - → all 10% is reabsorbed
- with aldosterone
 - → stimulates secretion of K⁺ into DCT
 - up to 50x’s more than was originally filtered

diuretics cause
- greater reabsorption of sodium and
- increased loss of potassium
 - → may require KCl supplements

5. **Hydrogen Ions (H⁺)**

linked to potassium secretion

6. **Bicarbonate Ions (HCO₃⁻)**

usually all is reabsorbed
Urine Analysis

the kidneys perform their homeostatic functions of controlling the composition of internal fluids of body

the by product of these activities is Urine

urine contains a high concentration of solutes

in a healthy person, its volume, pH and solute concentration vary with the needs of body

during certain pathologies, the characteristics of urine may change dramatically

an analysis of urine volume, physical and chemical properties can provide valuable information on the internal conditions of the body

Physical Characteristics

1. Volume
 normal = 1000 – 1800ml/day (2-3.5 pints)
 influenced by:
 blood pressure
 blood volume
 temperature
 diuretics
 mental state
 general health

2. Specific Gravity
 weight compared to water
 water = 1.000
 measures solute concentration
 average range: 1.008 - 1.030

3. Color
 normal = yellow-amber (from hemoglobin breakdown)
 influenced by:
 ratio of solutes
 → >solute conc.
 = darker yellow to brownish
 → <solute conc.
 = less color to colorless
 diet (eg. beets)
 blood in urine
4. **Transparency**
 turbid indicates mucus, bacteria or cells

5. **Odor**
 normal = musty
 diabetics → sweet odor

6. **pH**
 normal urine is slightly acidic: 5.0 - 7.8
 influenced by:
 diet
 eg. high protein → acidic
 vegetables → alkaline
 metabolic disorders:
 eg. lungs, kidneys, digestive system, etc

7. **Cells and Castings**
 normally find epithelial cells and some bacterial cells and varous cells casts
 Bacteria
 < 100-1000/ml = contamination by normal flora
 >100,000/ml = indicates active colonization of urinary system
 RBC’s & WBC’s
 presence is almost always pathological
 inflammation of urinary organs
 pus from infections

Chemical Characteristics

1. **Water**
 normally is 95% of total urine volume
 remaining 5% consists of solutes

2. **Normal Solutes**
 mostly wastes or excess amounts of nutrients, hormones, etc
 organic – mainly ‘nitrogenous’ compounds:
 urea (95% of N wastes)
 from deamination of amino acids
 creatinine
 from breakdown of energy transferring molecule especially in muscle cells
 uric acid
 from breakdown of nucleic acids
inorganic –
chlorides and salts
ammonia – N containing cmpd, not much produced, very toxic
phosphates
sulfates

3. Abnormal Solutes
normal constituents of plasma
usually do not appear in urine:
 too large to be filtered out
 all is reabsorbed

a. albumin (protein)
normally too large to filter out
presence indicates increased permeability of glomerular membrane due to:
 injury
 high blood pressure
 irritation
 toxins

b. glucose
normally, all is filtered and all reabsorbed
body reabsorbs as much as is needed
when it appears in urine indicates high blood sugar concentrations
 \(\rightarrow \) symptom of diabetes mellitis

c. ketones
produced when excessive quantities of fats are being catabolized
high quantities may be caused by:
 diabetes
 starvation
 dieting
 \(\rightarrow \) too little carbohydrates in diet

Other Functions of Kidneys

in addition to their primary role in removing metabolic wastes and excess nutrients and hormones from the body, kidneys also:

5. Control rate of erythropoiesis

kidneys produce hormone = erythropoietin that regulates erythropoiesis:
 hypoxic \(\rightarrow \) secretes more erythropoietin
 excessive \(O_2 \) inhibits hormone production
testosterone enhances kidney production of erythropoietin
estrogen and progesterone have no effect

6. Affects the absorption of Calcium from intestine
activates Vitamin D circulating in blood

7. Help to regulate blood pressure & volume
renin-angiotensin mechanism

 lower BP:
 → kidneys release enzyme = renin
 → renin triggers production of angiotensin II
 → angiotensin causes:
 vasoconstriction → raises BP
 release of ADH → conserves water to raise BP

helps maintain high filtration pressure in Renal corpuscles

blood pressure is directly affected by the volume of fluids retained or removed from body:

greater volume → increases BP
 eg. excessive salts promote water retention
lower volume → decreases BP
 eg. dehydration
 eg. internal bleeding

Kidneys can directly affect blood volume by altering salt and water reabsorption under influence of Aldosterone and ADH

 eg. Aldosterone promotes salt retention and therefore water retention by kidneys
 eg. ADH promotes water retention by kidneys

8. Regulate pH of body fluids

able to actively secrete excess hydrogen ions