Blood & Hematology

The human body is made up mostly of water; ~60 - 65% (40 L)

Body's transport system plays key role in balancing fluids in the body's compartments

 \rightarrow "river of life" Marieb

strictly speaking, blood is not a "body fluid" like tears, mucous, or saliva or urine

 \rightarrow it is a **living tissue** consisting of cells within a liquid `matrix'

Average person (150lb) has \sim 4.8 L of blood = 8% body weight

loss of 15-30% of blood \rightarrow pallor and weakness

loss of >30% \rightarrow severe shock, death

arterial blood: bright red = oxyhemoglobin venous blood: darker red

Composition:

plasma 55% of volume formed elements 45% =RBC's, WBC's, Platelets

<u>Plasma</u>

the liquid part of blood

clear straw colored fluid

plasma consists of liquid **solvent** → mostly water and **solutes** without the formed elements 93% water 7% solutes

1000's of different solutes

most solutes are proteins (=plasma proteins)

also: salts, ions, gasses, hormones, nutrients, wastes, enzymes

 \rightarrow some of virtually every chemical found anywhere in the body

can be found in the blood

project now underway to identify *every* chemical in blood

serum = plasma with clotting factors removed

plasma proteins (8% of blood):

most proteins in blood do not readily pass through capillaries into interstitial spaces

1. albumins

- → (with other proteins) contribute to viscosity, osmotic pressure & blood volume
- \rightarrow helps **buffer** the blood
- → transports many solutes by binding to them: eg. drugs, penicillin, pigments, fatty acids, bile salts

2. globulins

- → some are **antibodies**, part of immune system
- → some help **transport** solutes
- \rightarrow some involved in **clotting**

3. fibrinogen

 \rightarrow soluble precursor to **fibrin** = framework for clotting

Formed Elements

about 45% of whole blood **erythrocytes** (RBC's) -most, 45%, of formed elements **leukocytes** (WBC's) **thrombocytes** (Platelets)

all three are produced by stem cell

Erythrocytes

main job is to carry oxygen to cells

also deliver some carbon dioxide to lungs

most abundant of the three types of formed elements 99% of formed elements; \sim 5.5 mil/µl (µl=mm³⁾

equivalent to 2.5 trillion blood cells in whole body

biconcave disc thin center, thick edges

7.5 µm diameter, 2.0 µm thick

- → high surface/volume ratio greater efficiency of gas exchange area of all RBC's in body = >football field for gas exchange
- → flexible easily deforms to fit through narrow capillaries

RBC's are packed full of hemoglobin molecules

→in each RBC are 200-300 Million hemoglobin molecules each hemoglobin molecule can combine with 4 O_2' = **oxyhemoglobin**

therefore, each RBC can carry ~ 1 Billion O₂ molecules

Erythropoiesis

=formation of RBC's (vs hemopoiesis)

RBC's are produced mainly in red bone marrow

kidneys produce hormone = **erythropoietin** that regulates erythropoiesis

average RBC lives 100-120 days

as they age they become less flexible

spleen = "erythrocyte graveyard"

hemoglobin components are recycled after death:

- → biliverdin (green) & bilirubin (yellow/orange) → bile
- \rightarrow iron stored in liver

Erythrocyte Disorders

1. Anemias

inability of blood to carry enough O_2

- \rightarrow due to not enough RBC's or
- \rightarrow not enough hemoglobin in RBC's

due to low hematocrit:

normal:

men 42 - 52%

women 37 – 48%

anemia:

hematocrit is <37%

or low hemoglobin

normal:

males: 14-20 g/100ml women: 12-16 g/100ml

anemia:

hemoglobin <12 g/dL or

symptoms: pale lack energy, physical weakness shortness of breath difficulty concentration

kinds: hemorrhagic (bleeding) hemolytic (disease, parasites, drug reactions, genetic) aplastic (cancer) Iron deficiency Pernicious (no B12)

2. Abnormal Hemoglobin

anemia like symptoms

kinds: thalassemias thin and delicate blood cells

sickle cell

group of inherited diseases that afflicts several million worldwide include 80,000 african americans; 1 in 12 black babies in US carries at least 1 ss gene at worst: causes severe episodes of pain, stroke, damage to internal organs and death

3. Polycythemia

too many RBC's 8-11 million/mm³ hematocrit = 80%

increased viscosity

causes:

overstimulation of stem cells high altitude prolonged physical activity fluid loss genetic factors

Leucocytes

slightly larger than RBC's = $8\mu m$ diameter

are the only "true cells" of the formed elements they retain their organelles, including nucleus

large, irregular, lobed nucleus

relatively few are found circulating in blood: 4000-11,000/mm³ or 1% of blood

numbers are misleading since they do most of their work *outside* the blood vessels

mainly function in protection of body as part of immune system \rightarrow attack and destroy bacteria and pathogens \rightarrow remove dead cells and tissues

most WBC's are motile by a moeboid motion (pseudopodia) \rightarrow they squeeze out of capillaries into tissue spaces

5 different kinds of WBC's

ID depends on presence and staining characteristics of granules and nucleus:

the numbers of each type per unit of blood are clinically important = differential WBC count

eg. neutrophils

60-70% of circulating WBC's (also called band cells, stab cells or PMN's)

attracted to sites of inflammation

carry out phagocytosis & release toxic chemicals (eg hypochlorite and superoxide) to form killing zone around each dying neutrophil

especially attack bacteria and some fungi

increase indicates: acute bacterial infections & appendicitis

eg. lymphocytes

25-33% of circulating WBC's

increases in diverse infections and immune responses some in nonspecific defenses eg. against viruses and cancers

Leucopoiesis

WBC's can live for hours to a lifetime, though most have short lifespan

most WBC's live < 1 week

although some live for years

WBCs usually formed from stem cells in **bone marrow** or in **lymphatic tissue**

Leukocyte Disorders

1. Leukocytosis

total WBC count >10,000/µL sometimes as high as 400,000/µL

indicate:

acute infections, eg appendicitis vigorous exercise excessive loss of body fluids

eg. Leukemia

cancer characterized by uncontrolled production of leucocytes

but large numbers are usually nonfunctional

crowd out functioning WBC's

may become anemic as normal marrow is crowded out

myeloid leukemia	> granulocytes
lymphoid leukemia	> lymphocytes

2. Leukopenia

total WBC count <5,000/mm³

may be due to bone marrow defects or irradiation, excessive destruction of WBC's

or may indicate: influenza measles mumps chickenpox poliomyelitis anemias lead poisoning

Thrombocytes (Platelets)

not whole cells \rightarrow small, irregular shape cell fragments

2-4 µm diameter

second most abundant formed elements →average 250,000/µL range: 150,000 – 350,000/µL

number varies depending on site of collection

no gender differences

diverse functions:

1. secrete vasoconstrictors

in small vessels, vasoconstriction can be maintained by chemicals released by platelets that begin to accumulate at the site of damage

2. promote hemostasis

stopping the flow of blood by platelet plug &/or clotting

[more below]

3. stimulate formation of **clot dissolving enzymes** to remove clots no longer needed

clots are not permanent, after repair the clot is removed by chemicals activated by platelets

<u>Hemostasis</u>

stoppage of blood flow

include:

- 1. vascular spasm
- 2. platelet plug
- 3. clotting cascade

1. vascular spasm

occurs instantly

platelets release serotonin & thromboxane

 \rightarrow vasoconstriction at injury site

reduces blood loss

2. platelet plug

1-5 seconds after injury platelets become sticky adhere to exposed collagen fibers in damaged area and to each other process may stop if leak is sealed if not continues to clotting

3. Blood Clotting

if injury is extensive clotting cascade is initiated mechanism must be rapid to stop bleeding involve over 30 different chemicals

each is activated in a rapid sequence = **cascade** (positive feedback)

- 1. trigger: rough spot in lining of blood vessel slow blood flow (also, bedridden)
- 2. clumps of platelets adhere to site (1-2sec)
- 3. platelets and damaged tissues release clotting factors that trigger a series of enzymatic reactions
 - eg. thromboplastin, prothrombin activator
- 4. at last step, thrombin converts circulating **fibrinogen** to **fibrin** (fibrinogen soluble protein)
 - (fibrin insoluble protein)
 - fibrin is a protein forming fine threads that tangle together forming a clot

clot retraction

- 30-60 minutes
- draws edges of clot together
- 5. when tissue repair is complete and clot is no longer needed, platelets secrete factor XII → stimulates formation of enzymes that dissolve the old clot

fibrinolysis

= clot dissolution
occurs continuously
plasmins & fibrolysin = clot busters

Platelet Formation

platelets have a short life span: ~1-2 weeks

formed in marrow, lungs and spleen by fragmentation of large cells; 1 gives rise to \sim 6000 platelets)

if not used they are destroyed by liver or spleen

spleen also stores large numbers of platelets

 \rightarrow in time of stress (eg. hemorrhage or burns) can release large numbers into the blood

Thrombocyte Disorders

1. Spontaneous Clotting

body has mechanism that prevent spontaneous clotting without vessel damage:

- normal lining of vessels is smooth

 \rightarrow platelets do not adhere

blood also contains antithrombins
 → inactivate thrombin
 eg. heparin (a natural blood constituent)

sometimes clots are triggered by internal factors

two conditions favor clots:

rough spots on blood vessels atherosclerosis may trigger clotting

abnormally slow flow of blood bedridden or imobilized patients

these may be caused by: atherosclerosis severe burns inflammation slow flow

> thrombus – a fixed persistant clot embolism – a traveling clot

2. Thrombocytopenia

abnormally low number of platelets (<50,000 platelets /µL) → increased risk of internal hemorrhage from trauma or surgery if below 20,000 platelets/µL

 \rightarrow associated with multiple small bruises

(purpura), hemorrhagic spots (petechiae) in skin and sometimes spontaneous bleeding from mucous membranes

if below 10,000

→ potentially fatal hemorrhages in intestines or brain

2. <u>Bleeding Disorders</u> (=Hemophilias)

inability of blood to clot in normal amount of time may be caused by decreased # of platelets liver disease inability to form various clotting factors

prothrombin and fibrinogen are produced in liver require vitamin K (absorbed from intestine)

absorption of vitamin K requires bile

if bile ducts become obstructed results in vitamin K deficiency → liver cant produce prothrombin at normal rate

eg. factor VIII comprises 83% of cases

eg. factor X a sex linked condition

Blood Types

blood type refers to the kinds of antigens found on the surface of blood cells (esp RBC's)

related to immunity and how the body protects itself from pathogens:

our immune system recognizes and distinguishes between "self" and "nonself":

nonself = any proteins or chemicals that don't belong

antigen = any foreign substance that enters our body

antibody = special proteins made by our immune system to remove foreign substances

many antigens are present on surface of blood cells creating many different "blood types"

only a few are important in transfusions: ABO system Rh system

If these antigens are attacked by our antibodies it causes agglutination (clumping) of cells

leads to: heart attack stroke kidney failure etc

most important consideration in transfusions:

don't want recipient's antibodies to react with donor's antigens

Blood Type	Antigens	antibodies produced	can receive blood from	can donate blood to
Α	A	anti B	Α, Ο	A, AB
В	В	anti A	В, О	B, AB
AB	A & B	neither	A, B, AB, O (universal recipient)	AB
0	none	both	0	A, B, AB, O (universal donor)

ABO System Only

cross-matching confirms compatability

since many other antigens are present and some may cause reactions

even type O donors must be cross matched

Human Anatomy & Physiology: Blood & Hematology; Ziser Lecture Notes, 2005

Rh incompatability:

mother is Rh - & fetus is Rh +

- no reaction if normal pregnancy second such pregnancy antibodies cross placenta
- RhoGAM blocks the mothers immune systems response and prevents her sensitization to Rh+ blood of child.
- RhoGAM is a serum containing anti-Rh agglutinins that agglutinate the Rh factors that get into her blood

Hematology in Old Age

baseline rate of erythropoiesis doesn't change much with aging

most effects of aging are due to changes in other systems

- eg. but if stomach is producing less intrinsic factor, B_{12} will not be absorbed as well and may lead to anemia
- eg. atrophy of kidneys may reduce erythropoietin which could also affect erythropoiesis
- eg. thrombosis increases as plaques of atherosclerosis in blood vessels builds