Physiology of Male Reproductive System

the anterior pituitary gland serves as the primary control of reproductive function

at puberty Ant Pituitary secretes FSH & large amounts of LH (ICSH)

- FSH & LH cause testes to increase in size and begin sperm production
- LH \rightarrow triggers testes to produce testosterone

the secretion of FSH and LH is fairly constant from day to day in males

male hormone (=androgens) are secreted mainly by **interstital cells** of testes

main male hormone is **Testosterone**

additional testosterone is secreted by Adrenal Cortex

Testosterone functions:

1. local effects on sperm development in seminiferous tubules

decrease in testosterone can cause sterility

- 2. stimulates general protein synthesis
- 3. promotes muscular development, bone growth, thickening of skin and growth of facial and body hair
- development and maintenance of secondary sexual characteristics hair pattern thickening of vocal cords and enlargement of larynx to lower of voice pitch
- 5. behavioral changes (~sex drive, aggression, courtship behaviors)

Androgens are also produced in women ovary & adrenal cortex relatively weak promotes protein synthesis, growth not masculinizing

Negative feedback loop maintains constant level of testosterone in blood: \rightarrow high testosterone levels inhibit LH

Spermatogenesis

process of sperm production \rightarrow process takes ~ 70-80 days

sperm are produced in **seminiferous tubules**

sperm develop from a type of stem cell =**spermatogonia**

Steps of spermatogenesis:

- 1. spermatogonia remain dormant in childhood
- 2. at puberty they begin to divide (mitosis)
- some spermatogonia begin moving away from the wall of the tubule and enlarge to become primary spermatocytes
- 4. primary spermatocyte undergoes meiosis I to produce secondary spermatocytes
- 5. **secondary spermatocyts** undergo another division to produce **spermatids**

one primary spermatocyte produces 4 spermatids

- 6. spermatids mature into sperm cells
- by the time spermatozoa form they are near the lumen of the seminiferous tubules

spermatozoa are released and washed down the tubule to the epididymus

Spermatozoan Structure

composed of a head and a tail

head

long "pear" shaped

acrosome - contains enzymes that will be used to penetrate the egg

tail

includes

 $\textbf{midpiece} \rightarrow$ produce the ATP needed for propulsion

flagellum → means of locomotion

Physiology of Female Reproductive System

the major female reproductive processes:

- a. hormone secretion by ovary
- b. development of **follicle cells** surrounding egg
- c. **oogenesis & ovarian cycle** \rightarrow maturation of egg
- d. **menstrual cycle** \rightarrow development & shedding of uterine lining

in women, all are cyclic events

 \rightarrow not continuous as in males

involve a complex combination of several interdependent hormonal cycles

Hormone production

Puberty: Ant Pituitary begins secreting FSH and LH $$\sim\!7\text{-}8$$ yrs old

- FSH & LH production increases until ~11-13 yrs old
 - → triggers menstrual cycle & development of secondary sex characteristics
- FSH & LH stimulate follicle cells in ovary to begin secreting estrogen & progesterone

Estrogen function:

- 1. development and maturation of reproductive tract
- 2. development and maintenance of secondary sexual characteristics

change in fat distribution enlargement of mammary glands

inhibits growth of extremities

3. behavioral changes (~sex drive, courtship behaviors)

Progesterone function:

- 1. has its greatest effect on estrogen primed tissues
- changes that favor pregnancy and lactation endometrial thickening development of mammary glands

<u>Oogenesis</u>

in fetus, immature egg cells (=**oogonia**) multiply by mitosis until 5th month of gestation

- during reproductive years, 10-20 primary oocytes and follicles begin to develop each month.
- normally just one of these reaches maturity and ovulates and the rest degenerate
- as follicle cells develop, egg develops within under influence of FSH & LH from Ant. Pituitary
- egg undergoes meiosis but stops as **secondary oocyte** (metaphase II) until fertilization
- only ~400 500 follicles will ever develop into mature ova and be released by ovaries during a woman's reproductive years
- when woman reaches menopause (~50 yrs) very few primary follicles are left in ovaries

 \rightarrow reproduction ceases

Development of Follicle Cells

- within the ovary immature egg cells = **primary oocyte**s are enclosed within **primordial follicles**
- each month secretions of FSH stimulates some of these to develop into **primary follicles**

mitosis & development of these cells \rightarrow they begin to produce **estrogens**

- by 10 days or so only one primary follicle remains and has matured into a mature follicle (=**graafian follicle**)
- mature (graafian) follicle contains egg surrounded by fluid filled **antrum** \rightarrow this is the follicle that will ovulate
- after ovulation, the follicle collapses and becomes the **corpus luteum** \rightarrow secretes large amounts of progesterone

 $\begin{array}{cccc} egg & antrum & Graafian & Corpus & Corpus \\ nest \rightarrow follicle \rightarrow develops \rightarrow follicle \rightarrow ovulation \rightarrow Luteum \rightarrow Albicans \end{array}$

corpus albicans = scar tissue

the maturation of the egg, ovulation, hormone production and preparation of uterine lining are all cyclic events

these cycles are roughly 28 days long and have different names

The Ovarian Cycle

divided into:

a. follicular phase

a single follicle matures and is released at ovulation lasts ${\sim}12$ days

b. luteal phase

remaining follicle cells develop into corpus luteum lasts ${\sim}11~{\rm days}$

c. menstrual phase

uterine endometrium is shed =menstruation lasts \sim 5 days

The Menstrual Cycle

This cycle is tied to variations in several hormones

4 phases:

menstrual phase (days 1-6)

shedding of uterine lining if no fertilization

proliferative (follicular) phase (days 6-12)

as follicle develops it secretes increasing amounts of estrogen endometrium cells proliferate

ovulatory phase (days 12-16)

ovulation \rightarrow release of mature egg from ovary

secretory (luteal) phase (days 16-28)

follicle cells left behind after ovulation develop into corpus luteum corpus luteum secretes increasing amounts of progesterone

corpus luteum secretes increasing amounts of progesterone continued increase in development of endometrium

Mammary Glands

during pregnancy breast development is stimulated by **estrogen** and **progesterone** secreted by placenta

at birth shedding of placenta

 \rightarrow cuts off source of these hormones

 \rightarrow stimulates Ant. Pit. to secrete prolactin

Prolactin stimulates lactation (devel of milk in glands) usually takes several days for full milk production

Suckling of infant further stimulates secretion of

prolactin

oxytocin (from Post. Pituitary)

 \rightarrow promotes ejection of milk into ducts

+feedback: more suckling \rightarrow more milk released